B.Tech. (Biomedical Engineering)

Academic Year 2023-2024 (New)

Department of Biomedical Engineering School of Engineering & Technology

Central University of Rajasthan NH-8, Bandarsindri, Kishangarh, Ajmer Rajasthan 305817

Preamble:

The Central University of Rajasthan was established in the year 2009 by an act of Parliament by India's government with a motto to provide quality education to all sections of society, in particular to the deprived, and with a vision of education for sustainable development. Continuing with the motto and of its establishment and concept, we are in the continuous process of imparting quality education for all the sections of society and equipping them with apprised knowledge in their area and making them inclined towards their goals both professionally, personally, and socially. We are committed to producing graduates capable of leading the society in the path of prosperity and fraternity. The university has been offering a Master of Technology (M. Tech) program in Computer Science & Engineering with a specialization in Information Security and B.Tech. In CSE and ECE under the School of Engineering and Technology. The university intends to introduce an undergraduate program in engineering (Bachelor of Technology) in **Biomedical Engineering** to widen our horizon and serve society by producing engineering graduates with advanced medical skills to lead the nation towards sustainable development.

ABOUT THE DEPARTMENT

Biomedical Engineering is the junction of engineering, the life sciences, and healthcare. This implicates collaborating with clinicians and life science researchers to develop medicine, medical technologies, devices, equipment, software solutions, and computer systems related to the field. Biomedical Engineering is one of the three departments in the School of Engineering, Central University of Rajasthan (CURAJ), a central university located in Ajmer, Rajasthan, India. CURAJ has ten schools, twenty academic departments, and one community college covering Technology, Science, Humanities, Commerce, Management, Public Policy, and Social Science programs with a strong emphasis on scientific, technological, social education, and research. Total student enrolment at the university exceeds 1700 and includes students from over 23 states.

The vision of the Department:

To implement advanced engineering and science principles in the broad area of biology, and medicine, and improve healthcare delivery to humans in association with the clinical world.

The mission of the Department:

Apply knowledge of engineering, biology, and clinical principles to the design, development, and evaluation of drugs and various medical devices for cost-effective diagnosis and therapeutics to treat multiple ailments.

Biomedical Engineering is a multidisciplinary science, technology, and engineering degree identified as one of its niche engineering branches. It is a degree that combines biology and engineering materials and principles of medicine, aiming to streamline healthcare services in the country.

The overall cost of healthcare is likely to increase due to increased awareness and population. Moreover, the increased knowledge of recent medical advancements among the general population has led to an increased number of patients seeking biomedical solutions for their health issues. This will, in turn, increase the need for engineers in the biomedical field and likely result in faster-than-average growth in associated occupations long-lasting unmet need for scholars in the field of **Biomedical Engineering**.

Approved Intake (30)

Admission through JEE Main: 30 (Seats)

B. Tech. course in Biomedical Engineering (4 years)

Biomedical Engineering is an applied interdisciplinary field of technology. The program aims to cutting-edge knowledge to address the problems in the field of healthcare. The overall objective of the course is to prepare skilled biomedical engineers who can work on artificial organs, prosthetics, medical instruments, and health care delivery systems. The course will focus on the following core areas:

1- Biosensors and device development

Biosensors are analytical tool that senses analyte and generate an equivalent electrical signal with the help of a transducer. The biosensors are used in many applications including healthcare diagnostics, environmental monitoring, and food monitoring, etc. The biosensors can be incorporated with the electronic device to capture the generated signal.

2- Biomedical Imaging and biomedical devices

Biomedicals has developed from early simple uses of X-rays for diagnosis of fractures to technological developments in MRI, PET, SPECT, CT, ultrasound, acoustic elastography, optical coherence tomography, cardiac electrical potential mapping, human visual perception, image-guided intervention, and contrast agents. Microscopy has made advancements with fluorescence and confocal imaging enabling the visualization of structure and function at the microscopic scale and in three dimensions.

3-Biomechanic Systems: Musculoskeletal modeling, bone biomechanics, soft tissue mechanics, control of neuroprocessing for motor function, neuromuscular control systems, human locomotion, Cells, and tissues, studying their mechanics and mechanobiology.

4- Biomaterials, Tissue Engineering and nanomedicine

Biomaterial have made an enormous impact on the treatment of injury and disease and are used throughout the body. Because of the complexity of cell and tissue reactions to biomaterial, there is always a need for design, selection, synthesis and fabrication of new biomaterials. Tissue engineering aims to construct, restore, maintain, or improve damaged tissues or whole organs. Nanomedicine has revolutionized the drug delivery approaches and lessen the side-effects and improve drug absorption.

Program-specific Objectives:

1. Graduates of the program will adapt to the continuous changes in the field of Biomedical Engineering.

2. To grasp concepts of engineering mathematics and apply them in correlated engineering domains to evaluate real-world problems in health care.

3. The ability to grasp the research advancements and evolve with innovative ideas to contribute towards cost effective product development for providing access of health care services to masses.

Program Outcomes – Competencies – Performance Indicators

PO 1: Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization for the solution of complex engineering problems.

Competency	Indicators
1.1 Demonstrate competence in mathematical	1.1.1 Apply mathematical techniques such as
modeling	calculus, linear algebra, and statistics to solve
	problems
	1.1.2 Apply advanced mathematical techniques
	to model and solve Biomedical engineering
	problems
1.2 Demonstrate competence in basic sciences	1.2.1 Apply laws of natural science to an
	engineering problem
1.3 Demonstrate competence in engineering	1.3.1 Apply fundamental engineering concepts
fundamentals	to solve engineering problems
1.4 Demonstrate competence in specialized	1.4.1 Apply integrated engineering concepts to
engineering knowledge to the program	solve engineering problems.
	1

PO 2: Problem analysis: Identify, formulate, research literature, and analyses complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

natural sciences, and engineering sciences.							
Competency	Indicators						
2.1 Demonstrate an ability to identify and	2.1.1 Articulate problem statements and						
formulate complex engineering problem	identify objectives						
	2.1.2 Identify engineering systems, variables,						
	and parameters to solve the problems						
	2.1.3 Identify the mathematical, engineering						
	and other relevant knowledge that applies to a						
	given problem						
2.2 Demonstrate an ability to formulate a	2.2.1 Reframe complex problems into						
solution plan and methodology for an	interconnected sub-problems						
engineering problem	2.2.2 Identify, assemble and evaluate						
	information and resources.						
	2.2.3 Identify existing processes/solution						
	methods for solving the problem, including						
	forming justified approximations and						
	assumptions						
	2.2.4 Compare and contrast alternative solution						
processes to select the best process.							
2.3 Demonstrate an ability to formulate and	2.3.1 Combine scientific principles and						
interpret a model	engineering concepts to formulate model/s						

2.4 Demonstrate an ability to execute a solution process and analyze results	 (mathematical or otherwise) of a system or process that is appropriate in terms of applicability and required accuracy. 2.3.2 Identify assumptions (mathematical and physical) necessary to allow modeling of a system at the level of accuracy required. 2.4.1 Apply engineering mathematics and computations to solve mathematical models 2.4.2 Produce and validate results through skillful use of contemporary engineering tools
	and models 2.4.3 Identify sources of error in the solution process, and limitations of the solution. 2.4.4 Extract desired understanding and conclusions consistent with objectives and limitations of the analysis
PO 3: Design/Development of Solutions: Des and design system components or processes t consideration for public health and safety considerations.	ign solutions for complex engineering problems that meet the specified needs with appropriate , and cultural, societal, and environmental
Competency	Indicators
3.1 Demonstrate an ability to define a complex/	3.1.1 Recognize that need analysis is key to
open-ended problem in engineering terms 3.2 Demonstrate an ability to generate a	 good problem definition 3.1.2 Elicit and document, engineering requirements from stakeholders 3.1.3 Synthesize engineering requirements from a review of the state-of-the-art 3.1.4 Extract engineering requirements from relevant engineering Codes and Standards such as, DCA, FDA, BIS, ISO and ASTM. 3.1.5 Explore and synthesize engineering requirements considering health, safety risks, environmental, cultural and societal issues 3.1.6 Determine design objectives, functional requirements and arrive at specifications 3.2.1 Apply formal idea generation tools to
diverse set of alternative design solutions	 3.2.1 Apply formal idea generation tools to develop multiple engineering design solutions 3.2.2 Build models/prototypes to develop a diverse set of design solutions 3.2.3 Identify suitable criteria for the evaluation of alternate design solutions
3.3 Demonstrate an ability to select an optimal design scheme for further development	3.3.1 Apply formal decision-making tools to select optimal engineering design solutions for further development3.3.2 Consult with domain experts and stakeholders to select candidate engineering design solution for further development
3.4 Demonstrate an ability to advance an engineering design to defined end state	3.4.1 Refine a conceptual design into a detailed design within the existing constraints (of the resources)3.4.2 Generate information through appropriate

	tests to improve or revise the design
PO 4: Conduct investigations of complex]	problems: Use research-based knowledge and
research methods including design of experim	elusions
synthesis of the information to provide valid con	
Competency	Indicators
4.1 Demonstrate an ability to conduct	4.1.1 Define a problem, its scope and
investigations of technical issues consistent	importance for purposes of investigation
with their level of knowledge and	4.1.2 Examine the relevant methods, tools and
understanding	adibration data acquisition analysis and
	calibration, data acquisition, analysis and
	1.1.2 A nnly appropriate instrumentation and/or
	4.1.5 Apply appropriate instrumentation and/or
	software tools to make measurements of
	A 1.4 Establish a relationship between
	4.1.4 Establish a relationship between
	niedsured data and underlying physical
PO 5: Modern tool usage: Create select an	d apply appropriate techniques resources and
modern engineering and IT tools including pr	ediction and modeling to complex engineering
activities with an understanding of the limitation	e complex engineering
Competency	Jindicators
5.1 Demonstrate an ability to identify/ create	5.1.1 Identify modern engineering tools such as
modern engineering tools techniques and	computer-aided drafting modeling and
resources	analysis: techniques and resources for
	engineering activities
	5.1.2 Create/adapt/modify/extend tools and
	techniques to solve engineering problems
5.2 Demonstrate an ability to select and apply	5.2.1 Identify the strengths and limitations of
discipline-specific tools, techniques and	tools for (i) acquiring information, (ii)
resources	modeling and simulating, (iii) monitoring
	system performance, and (iv) creating
	engineering designs.
	5.2.2 Demonstrate proficiency in using
	discipline-specific tools
5.3 Demonstrate an ability to evaluate the	5.3.1 Discuss limitations and validate tools,
suitability and limitations of tools used to solve	techniques and resources
an engineering problem	5.3.2 Verify the credibility of results from tool
	use with reference to the accuracy and
	limitations, and the assumptions inherent in
	their use.
PO 6: The engineer and society: Apply reason	oning informed by the contextual knowledge to
assess societal, health, safety, legal and cultu	aral issues and the consequent responsibilities
relevant to the professional engineering practice.	
Competency	T 1 4
	Indicators
6.1 Demonstrate an ability to describe	6.1.1 Identify and describe various engineering
engineering roles in a broader context, e.g.	6.1.1 Identify and describe various engineering roles; particularly as pertains to protection of
engineering roles in a broader context, e.g. pertaining to the environment, health, safety,	6.1.1 Identify and describe various engineering roles; particularly as pertains to protection of the public and public interest at the global,
6.1 Demonstrate an ability to describe engineering roles in a broader context, e.g. pertaining to the environment, health, safety, legal and public welfare	6.1.1 Identify and describe various engineering roles; particularly as pertains to protection of the public and public interest at the global, regional and local level

6.2	Demonstrat	te an	understanding	of	6.2.1 Interpret legislation, regulations, codes,
profe	ssional	engineeri	ing regulati	ons,	and standards relevant to your discipline and
legislation and standards			explain its contribution to the protection of the		
					public

PO 7: Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and the need for sustainable development.

Competency	Indicators					
7.1 Demonstrate an understanding of the	7.1.1 Identify risks/impacts in the life-cycle of					
impact of engineering and industrial practices	an engineering product or activity					
on social, environmental and in economic	7.1.2 Understand the relationship between the					
contexts	technical, socio-economic and environmental					
	dimensions of sustainability					
7.2 Demonstrate an ability to apply principles	7.2.1 Describe management techniques for					
of sustainable design and development	sustainable development					
	7.2.2 Apply principles of preventive					
	engineering and sustainable development to an					
	engineering activity or product relevant to the					
	discipline					
PO 8: Ethics: Apply ethical principles and com	mit to professional ethics and responsibilities and					
norms of the engineering practice.	T . 1* 4					
Competency	Indicators					
8.1 Demonstrate an ability to recognize ethical	8.1.1 Identify situations of unethical					
dilemmas	professional conduct and propose ethical					
	alternatives					
8.2 Demonstrate an ability to apply the Code of	8.2.1 Identify tenets of the BMES professional					
Ethics	code of ethics.					
	8.2.2 Examine and apply moral & ethical					
	principles to known case studies					
PO 9: Individual and team work: Function e	frectively as an individual, and as a member or					
Competency	Indicators					
9.1 Demonstrate an ability to form a team and	911 Recognize a variety of working and					
define a role for each member	learning preferences: appreciate the value of					
	diversity on a team					
	9.1.2 Implement the norms of practice (e.g.					
	rules, roles, charters, agendas, etc.) of effective					
	team work, to accomplish a goal.					
9.2 Demonstrate effective individual and team	9.2.1 Demonstrate effective communication.					
operations communication, problem-solving.	problem-solving, conflict resolution and					
conflict resolution and leadership skills	leadership skills					
1	9.2.2 Treat other team members respectfully					
	9.2.3 Listen to other members					

9.3 Demonstrate success in a team-based project 9.3.1 Present results as a team, with smooth integration of contributions from all individual efforts

PO 10: Communication: Communicate effectively on complex engineering activities with the engineering community and with the society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive

clear instructions					
Competency	Indicators				
10.1 Demonstrate an ability to comprehend	10.1.1 Read, understand and interpret technical				
technical literature and document project work	and non-technical information				
	10.1.2 Produce clear, well-constructed, and				
	well-supported written engineering documents				
	10.1.3 Create flow in a document or				
	presentation - a logical progression of ideas so				
	that the main point is clear				
10.2 Demonstrate competence in listening,	10.2.1 Listen to and comprehend information,				
speaking, and presentation	instructions, and viewpoints of others				
	10.2.2 Deliver effective oral presentations to				
	technical and non-technical audiences				
10.3 Demonstrate the ability to integrate	10.3.1 Create engineering-standard figures,				
different modes of communication	reports and drawings to complement writing				
	and presentations				
	10.5.2 Use a variety of media effectively to				
	convey a message in a document of a				
BO 11: Project management and finance: D	presentation				
anging and management principles and any	ally these to one's work as a member and leader				
in a team, to manage projects and in multidiscipl	inary environments				
Competency	Indicators				
11.1 Demonstrate an ability to evaluate the	11.1.1 Describe various economic and financial				
economic and financial performance of an	costs/benefits of an engineering activity				
engineering activity	11.1.2 Analyze different forms of financial				
	statements to evaluate the financial status of an				
	engineering project				
11.2 Demonstrate an ability to compare and	11.2.1 Analyze and select the most appropriate				
contrast the costs/benefits of alternate	proposal based on economic and financial				
proposals for an engineering activity	considerations.				
11.3 Demonstrate an ability to plan/manage an	11.3.1 Identify the tasks required to complete				
engineering activity within time and hudget	an engineering activity and the resources				
constraints	required to complete the tasks				
	11.3.2 Use project management tools to				
	schedule an engineering project so it is				
	completed on time and on budget.				
PO 12: Life-long learning: Recognize the ne	ed for, and have the preparation and ability to				
engage in independent and life-long learning in t	he broadest context of technological change.				
Competency	Indicators				
12.1 Demonstrate an ability to identify gaps in	12.1.1 Describe the rationale for the				
knowledge and a strategy to close these gaps	requirement for continuing professional				
	development				
	12.1.2 Identify deficiencies or gaps in				
	knowledge and demonstrate an ability to				
	source information to close this gap				

12.2 Demonstrate an ability to identify	12.2.1 Identify historic points of technological						
changing trends in engineering knowledge and	advance in engineering that required						
practice	practitioners to seek education in order to stay						
	current						
12.2.2 Recognize the need and be able to							
	clearly explain why it is vitally important to						
	keep current regarding new developments in						
	your field						
12.3 Demonstrate an ability to identify and	12.3.1 Source and comprehend technical						
access sources for new information	literature and other credible sources of						
	information						
	12.3.2 Analyze sourced technical and popular						
	information for feasibility, viability,						
	sustainability, etc.						

Detailed Scheme

SEMESTER-I

SEM	ESTER I					
Sr.	Course	Course Name	L	Т	Р	Credits
No	Code					
			Hours/	weel	Υ.	
1	BME 101	Engineering Mathematics-I	3	1	0	4
2	BME 102	Introduction to Biomedical Engineering	3	0	0	3
3	BME 103	Basic Electrical Engineering	3	0	1	4
4	BME 104	English (Language and Communication	3	1	0	4
4		Writing Skills-I)				
5	BME 105	Introduction to Programming (Shifted	3	1	0	3
5		from 2 nd Semester to 1 st Semester)				
6	BME 106	Programming Lab (shifted from 2 nd	0	0	2	2
0		Semester to 1 st Semester)				
Tota	l Credit					20

SEMESTER II

SEN	IESTER II					
Sr.	Course	Course Name	L	Т	P	Credits
NO	Code		II		oolr	
			H	ours/w	еек	
1	BME 107	Engineering Mathematics-II	3	1	0	4
2	BME 108	Basic Electronics Engineering	3	0	2	4
3	BME 109	Universal Human Value (UHV)	3	0	1	4
4	BME 110	Biomedical Engineering Workshop	3	1	0	4
5	BME 111	Engineering Physics (Syllabus	1	0	4	4
5		Update)				
6	BME 112	Engineering Chemistry (syllabus	3	0	2	4
6		update)				
Tota	al Credit		•	•	-	20

* *The Course on University Human Value (UHV) is a compulsory course as an audit course that should be cleared by all the students; however, this will not affect the credits of the program.

SEMESTER III

Sl. No	COURSE CODE	COURSE TITLE	CATEGORY	L	Т	Р	С
THE	ORY						
1.	BME 201	Biomechanics	BS	3	0	0	3
2.	BME202	Electronic devices and circuits	ES	3	0	0	3
3.	BME203	Molecular and Cellular Biology	BS	3	0	0	3
4.	BME204	Circuit Theory and Network Analysis	PC	3	0	0	3
5.	BME205	Human Anatomy and Physiology	PC	3	0	0	3
PRACT	TICALS						
6.	BME206	Electronic devices and circuits Lab	PC	0	0	4	2
7.	BME207	Molecular and Cellular Biology Lab	PC	0	0	4	2
8.	BME208	Human anatomy and physiology laboratory	PC	0	0	4	2
					TC	DTAL	21

SEMESTER IV

Sl. No	COURSE CODE	COURSE TITLE CATEGORY		L	Т	Р	С
THEO	THEORY						
1.	BME 209	Signals and system design (Name change)	ES	3	0	0	3
2.	BME210	Biomedical Instrumentations	PS	3	0	0	3
3.	BME211	Pathology and human diseases PC		3	0	0	3
4.	BME212	Biomaterials	PC	3	0	0	3
5.	BME213	Digital System Design	PC	3	0	0	3
PRACTICALS							
6.	BME214	Biomedical Instrumentations and Devices lab	РС	0	0	4	2
7.	BME215	Biomaterials Lab	PC	0	0	4	2
8.	BME216	Digital System Design Lab	PC	0	0	4	2
					Т	OTAL	21

SEMESTER V

Sl. No	COURSE CODE	COURSE TITLE	CATEGORY	L	Т	Р	С
THE	ORY						
1.	BME301	Environmental Studies	PC	3	0	0	3
2.	BME302	Biomedical Imaging	PC	3	0	0	3
3.	BME303	Invasive and non-invasive medical Diagnostic Technique	PC	3	0	0	3
4.	BME304	Analog Electronics	PC	3	0	0	3
5.		Program electives I	PC	3	0	0	3
PRA	CTICALS						
6.	BME305	Immunotechnology lab	PC	0	0	4	2
7.	BME306	Analog Electronics lab	PC	0	0	4	2
8.	BME307	Biomedical Imaging Laboratory	PC	0	0	4	2
					r	Fotal	21

SEMESTER VI

SI.	COURSE	COURSE TITLE	CATEGORY	L	Т	Р	С
NO	CODE						
		THEORY					
1.	BME308	Measurements and Instrumentations	PC	3	0	0	3
2.	BME309	Sensors & Transducers in Healthcare	PC	3	0	2	4
3.	BME310	Microcontrollers and embedded system	PC	3	0	2	4
4.	BME311	Medical Image Processing	PC	3	0	2	4
5.		Program electives II	PC	3	0	0	3
6.	BME 312	Project I	PC	0	0	6	3
					-		

TOTAL **21**

Internship: 6-8 weeks of industrial training can be conducted at the end of the VI Semester but evaluation will be done next (VII) semester.

SEMESTER VII

SI. NO	COURSE CODE	COURSE TITLE	CATEGORY	L	Т	Р	С
1.	BME401	Digital Signal Processing	PC	3	0	0	3
2.	BME402	Biological Control Systems	PC	3	0	0	3
3.	BME403	Biomics implants and Artificial Organs	PC	3	0	0	3
4.	BME404	Neuro science and Nero technology	PC	3	0	0	3
5	BME405	Project II	PC	0	1	5	2
6.	BME406	Short Internship		0	0	2	1
7		Program electives III	PE	3	0	0	3
TOTAL 18					18		

SEMESTER VIII

SI. NO	COURSE CODE	COURSE TITLE	CATEGORY	L	Т	Р	С
1.		Program electives IV	PE	3	0	0	3
2.		Program electives V	PE	3	0	0	3
3.		Program electives VI	OE	3	0	0	3
4.	BME407	Project III	PC	0	1	16	9
TOTAL 18						18	
L: Lecture, T: Tutorial, P: Practical, C: Credit							

TOTAL NO. OF CREDITS: 160

List of Program electives/open electives

- BME 315: Immunotechnology
- BME 316: Tissue Engineering and Regenerative Medicine
- BME 317: Electronic Circuit for Biomedical Instruments
- BME 318: Hospital system management
- BME 319: 3D printing technology
- BME 320: Medical Nanotechnology
- BME 321: Pharmaceutical Microbiology and Biotechnology
- BME 408: Introduction to MEMS
- **BME 409: Biostatistics**
- BME 410: Artificial intelligence and neural networks in medicine
- BME 411: Nanoelectronics
- BME 412: Machine learning and AI
- BME 413: Microprocessors Theory and Application
- BME 414: Information theory and coding
- BME 415: Speech and Audio Processing
- BME 416: Electronic Measurement and Instruments
- BME 417: Biomedical Hazards & Safety
- BME 418: Regulatory processes and bioethics
- BME 419: Bioinformatics and Drug Discovery
- BME 420: Molecular Imaging (imaging of chemistry and biology)

"In addition to above-mentioned subjects, some other subjects may be considered as open electivesoffered by other departments of the university and through MOOC

DETAILED SYLLABUS

SEMESTER-I

BME 101: Engineering Mathematics-I					
Teaching Scheme	Examination Scheme	Credits alloc	ated		
Theory 3 h/week+	End of semester Examination-60 marks	s Theory-3, Tutorial-1			
Tutorial 1h/week					
Course Prerequisi	Course Prerequisite: Knowledge of 10+2 Mathematics.				
Course Objective:					
To provide the stud	lents with sufficient knowledge in matrix	, calculus, and diffe	rentiation,		
so that it can be use	ed in their respective fields of Engineering.				
Course Outcomes	: On completion of this course, students w	ill be able to			
CO1: Apply eler	nentary transformations to reduce the mat	rix into the echelon	form and		
normal for	m to determine its rank and interpret the va	arious solutions of a	system of		
linear equa	tions.		-		
CO2: To underst	and mean values theorems, differentiation,	, curvature, concavit	ty, etc.		
CO3: To apply in	ntegration, integrals in higher order applica	ations.			
CO4: To underst	and different functions of vector calculus	and to apply them	in further		
synthesis.					
Level	Bachelor				
	Course Content				
Unit -I	Rank and inverse of a matrix	by elementary	10 hrs		
	transformation, consistency of the	linear system of			
	equations and their solution. Eigen	values and Eigen			
	vectors. Cayley-Hamilton theorem (stat	ement only) & its			
	applications.				
Unit-II	Mean value theorems and their geometri	cal interpretations,	10 hrs		
	Taylor's and Maclaurin's series expansions, Successive				
	differentiation and Leibnitz theorem; Ind				
	L'Hospital Rule, Asymptotes, Curvatur	re, Concavity and			
	convexity, point of inflexion.				
Unit-III	Integration as inverse process of differentiation;				
	Integration by substitution,				
	The fundamental theorem of calculus, Definite integrals				
	and its application to find area under simple curve and area				
between two curves, Area of a curve using multiple					
integral.			10 has		
Unit-IV	Differentiation and integration of vector	diant Directional	10 nrs		
	derivative Gauss's and Stakes's theorem	s (statement only)			
	and their simple applications	is (statement only)			
	Internal assessment				
Part A	CIA-I: Unit I. and II	20 Marks	5		
	CIA-II: Unit III and IV	20 Marks	- -		

Part B	ESE: Term Exam	60 Marks				
Text/Reference Books:						
1. R.K.Jain & S R I	K Iyengar, Advanced Engineering Mathem	natics, Narosa Pub.House				
2. Thomas & Finne	y, Advanced calculus and geometry Addis	son-Wesley Pub. Co.				
3. D. W. Jordan & 1	P Smith, Mathematical Techniques, OXFO	DRD				
4. Peter V. O'Neil,	Advanced Engineering Mathematics, Cen	gage Learning,NewDehli				
5. B.V.Ramana, Hi	gher Engineering Mathematics, McGraw -	- Hill.				
6. Methods of Real	Analysis by R. R. Goldberg.					
7. Foundation of Di	7. Foundation of Differential Calculus by Euler, Translated by J.D. Blanton, Springer-					
Verlag, New York, 2000.						
8. Calculus, Vol. 1, 2 by T. Apostol, John Wiley.						
9. Differential and	Integral Calculus by Shanti Narayan.					

BMI	E 102: Introduction to Biomedical Engineering		
Teaching Scheme	Examination Scheme	Credits allocated	
Theory 3 hrs/week	End of semester Examination-60 marks	Theory-3	
	Internal assessment:40 marks		
Course Prerequisite: NA			
Course Objective:			
1. To explain the	basic function of sensors.		
2. To explain the	basic physics of biomedical instrumentation.		
3. To explain the	basic physics of Bio imaging systems.		
4. To explain the	science of life.		
Course Outcomes: On	completion of this course, students will be able to		
CO1: Understand	the basic concepts of sensors and transducers.		
CO2: Understand the basic physics of medical instrumentation.			
CO3: Understand the basic physics of medical imaging systems.			
CO4: Understand the biological function of human body.			
	Course Content		
Unit -I	Introduction to Sensors	10 hrs	
	Introduction to Biomedical Sensors General concept and		
	terminology, Sensor classification and calibration, static		
	and dynamic characteristics, errors and uncertainty.		
	Resistive sensors, Capacitive sensors, Inductive sensors,		
	Electromagnetic sensors. Biosensors Operating		
	principle, biological elements in biosensors,		
	Immobilization of the biological component.		
Unit-II	Basics of Biomedical Engineering, Biosignals, Bio	10 hrs	
	instrumentations, Biomedical Imaging, Biosensors,		
	Embedded Systems in Biomedical, Point-of-care		
	Devices, Biosciences.		

Unit-III	Introduction to Biomedical Imaging Systems	10 hrs	
	Introduction to X-Rays CT MRI Ultrasound		
	Difference in CT and MDI Use of Ultracound		
	Difference in CI and MRI. Use of Oltrasound.		
	Application of MRI and CT. Imaging vital organs using		
	CT, MRI and Ultrasound. Exclusion criteria of MRI.		
	· · · · · · · · · · · · · · · · · · ·		
Unit-IV	Structures of prokaryotic and Eukaryotic cells, levels of	10 hrs	
	organization cellular organelles and functions Bio-		
	magnetic and the matrice and the sector of t		
	macromolecules-proteins, carbonydrates, nucleic		
	acids, lipids, central Dogma of Molecular Biology.		
	Assessment		
Part A	CIA-I: Unit I	20 Marks	
	CIA-II: Unit II, III	20 Marks	
Part B	End Semester Exam	60 Marks	
Essential Readings			
1. John C. Webster, Medical Instrumentation Leighton, Mifflin Co Boston, USA			
2. R. S. Khandpur Handbook of Biomedical Instrumentation, Tata McGraw			
hill, Pub, Co Lto	d., New Delhi.		
, 1			

	BME103: Basic Electrical Engineering	
Teaching Scheme	Examination Scheme	Credits
		allocated
Theory 3	End of semester Examination-60 marks	Theory-
hrs/week		3
Practical	Internal assessment:40 marks	Lab-1
2hrs/week		
		Total-4
Course Prerequisite	: Students should have basic knowledge on Physics and Mathema	atics
Course Objective:	The main objective of this course is to understand the laws of	electrical
technology, operation	on of power converter and working of important electrical install	ation used
in domestics or hou	sehold purposes	
Course Outcomes:	On completion this course, students will be able to	
1. To u	inderstand and analyze basic electric and magnetic circuits	
2. To s	tudy the working principles of electrical machines and power cor	verters.
3. To in	ntroduce the components of low voltage electrical installations	
Course Content:		
Unit -I	DC Circuits:	10 hrs
	Electrical circuit elements (R, L and C), voltage and current	
	sources, Kirchoff current and voltage laws, analysis of simple	
	circuits with dc excitation. Superposition, Thevenin and	
	Norton Theorems. Time-domain analysis of first-order RL	
	and RC circuits.	

Unit-II	AC Circuits:	10 hrs	
	Representation of sinusoidal waveforms, peak and rms values,		
	phasor representation, real power, reactive power, apparent		
	power, power factor. Analysis of single-phase ac circuits		
	consisting of R, L, C, RL, RC, RLC combinations (series and		
	parallel), resonance. Three phase balanced circuits, voltage		
	and current relations in star and delta connections.		
Unit-III	Transformers:	10 hrs	
	Magnetic materials, BH characteristics, ideal and practical		
	transformer, equivalent circuit, losses in transformers,		
	regulation and efficiency. Auto-transformer and three-phase		
	transformer connections.		
Unit-IV	Electrical Machines and power converter:	10 hrs	
	Generation of rotating magnetic fields, Construction and		
	working of a three-phase induction motor, Significance of		
	torque-slip characteristic. Loss components and efficiency,		
	starting and speed control of induction motor. Single-phase		
	induction motor. Construction, working, torque-speed		
	characteristic and speed control of separately excited dc		
	motor. Construction and working of synchronous generators;		
	DC-DC buck and boost converters, duty ratio control. Single-		
	phase and three-phase voltage source inverters; sinusoidal		
	modulation		
Unit-V	Electrical Installations:	10 hrs	
	Components of LT Switchgear: Switch Fuse Unit (SFU),		
	MCB, ELCB, MCCB, Types of Wires and Cables, Earthing.		
	Types of Batteries, Important Characteristics for Batteries.		
	Elementary calculations for energy consumption, power factor		
	improvement and battery backup		
	-		
	Internal assessment		
Part A	CIA-I: Unit I, II and III		
	CIA-II: Unit IV, V, and VI		
	Basic Electrical Engineering Laboratory	[
	List of Experiments		
1. Introducti	on and use of measuring instruments – voltmeter, ammeter, m	ulti-meter,	
oscilloscope. Real-life resistors, capacitors and inductors.			
2. Identification various passive components without multimeters.			
3. Measuring the steady-state and transient time-response of R-L, R-C, and R-L-C			
circuits to	circuits to a step change in voltage (transient may be observed on a storage		
oscilloscope). Sinusoidal steady state response of R-L, and R-C circuits – impedance			
calculation and verification. Observation of phase differences between current and			
voltage. R	tesonance in R-L-C circuits.		
4. Observatio	on of the no-load current waveform on an oscilloscope (non	sinusoidal	
wave-shap	pe due to B-H curve nonlinearity should be shown along with a	discussion	
about harmonics). Loading of a transformer: measurement of primary and secondary			

voltages and currents, and power.

	voltages and carrents, and power.
5.	Observation of Star and Delta connections. Voltage and Current relationships (line-
	line voltage, phase-to-neutral voltage, line and phase currents). Phase-shifts between
	the primary and secondary side. Cumulative three-phase power in balanced three-
	phase circuits.
6.	Demonstration of cut-out sections of machines: dc machine (commutator-brush
	arrangement), induction machine (squirrel cage rotor), synchronous machine (field
	winging - slip ring arrangement) and single-phase induction machine.
7.	Torque Speed Characteristic of separately excited dc motor.
8.	Synchronous speed of two and four-pole, three-phase induction motors. Direction
	reversal by change of phase-sequence of connections. Torque-Slip Characteristic of
	an induction motor. Generator operation of an induction machine driven at
	supersynchronous speed.
9.	Synchronous Machine operating as a generator: stand-alone operation with a load.
	Control of voltage through field excitation.
10	. Demonstration of (a) dc-dc converters (b) dc-ac converters – PWM waveform (c) the
	use of dc-ac converter for speed control of an induction motor and (d) Components
	of LT switchgear.
	Text Books:
	1. Charles K. Alexander, Matthew N.O. Sadiku, "Fundamentals of Electric
	Circuits", McGraw Hill Education; 5th edition (1 July 2013)
	2. Abhijit Chakrabarti, and Sudipta Nath, "BASIC ELECTRICAL
	ENGINEERING", McGraw Hill Education; 1st edition (1 July 2017).
	3. D. P. Kothari and I. J. Nagrath, "Basic Electrical Engineering", Tata McGraw
	Hill, 2010
	Reference Books:
	1. D. C. Kulshreshtha, "Basic Electrical Engineering", McGraw Hill, 2009.
	2. L. S. Bobrow, "Fundamentals of Electrical Engineering", Oxford University
	Press, 2011.
	3. E. Hughes, "Electrical and Electronics Technology", Pearson, 2010.
2	4. V. D. Toro, "Electrical Engineering Fundamentals", Prentice Hall India, 1989.

BME 104: English Language And Communication Skills			
Examination Scheme	Credits allocated		
End of semester Examination-60 marks	Theory-3		
Internal assessment:40 marks	Lab-1		
	Total-4		

Unit I Grammar and its Usage

i. Phrases, clauses and elements of a sentence ii. Articles, Tenses and Modals

Unit II Oral and Written Communication

i. Letter Writing-Formal and Informal

ii. Short Presentation, so as to get across one's perspective, 200-250 words

Unit III Forms of Writing

- i. Extract from Abdul Kalam's Wings of Fire, Section One : Orientation
- ii. Resume Writing and Job Application.

Recommended Reading:

1. Thomson, A.J. & Martinet: A Practical English Grammar; Oxford University Press.

2. Hyland, Ken: Second Language Writing; University of Michigan Press.

3. Gabor Don: How to start conversations and make friends; New York: Fireside

4. Krishnaswamy, N: Modern English – A Book of Grammar, Usage and Composition, Macmillan India Ltd.

5. Quirk and Greenbaum: A University Level Grammar of English, Pearson

	BME1	05: Introduction to Programming		
Teaching Sch	eme	Examination Scheme	Credits allocation	ted
Theory 3 hrs/week		End of semester Examination-60 marks	Theory-3	
Practical 2hrs/week		Internal assessment:40 marks	Lab-1	
		· · · · · · · · · · · · · · · · · · ·	Total-4	
Course Prerequisite: S	Students shou	Ild have basic knowledge of Computer fundam	nentals	
Course Objective: Tl	he main obje	ctive of this course is to understand the cor	ncept of proble	em-
solving using algorith	im and progra	amming.		
Course Outcomes: On	n completion	this course, students will be able to		
To develop	p algorithms	for arithmetic and logical problems		
To transla	te the algorith	nms to programs & execution		
To decom	pose a proble	m into functions and synthesize a complete pr	ogram	
Course Content:				
Unit -I	Introductio	on to Programming:	10 hrs	
	Concept of	f programming, program development st	eps,	
	programmir	ig languages, concept of high-level, assembly	and	
	low-level p	rogramming languages, Concept of algorith	nms,	
	representing	g algorithms through flow chart, pseudo co	ode,	
	introduction	to the editing tools such as vi or ms-vc edit	tors,	
	concepts of	the finite storage		
Unit-II	Programm	ing using C:	10 hrs	
	Structure of	c program, a simple c program, identifiers, b	asic	
	data types	and sizes, constants, variables, arithme	etic,	
	relational a	nd logical operators, increment and decren	nent	

	operators, conditional operator, bit-wise operators, assignment operators, expressions, type conversions, conditional expressions, precedence and order of evaluation, c primitive input output using getchar and putchar, exposure to the scanf and printf function, statements and blocks, if and	
	switch statements	
Unit-III	Iterations and Subprograms: Concept of loops, while, do-while and for statements, break, continue, goto and labels, introduction to arrays- concepts, declaration, definition, accessing elements, storing elements, two-dimensional and multi-dimensional arrays, applications of arrays. Concept of sub-programming, functions, parameter passing, storage classes- extern, auto, register, static, scope rules, user defined functions, standard library functions,	10 hrs
	recursive functions.	
Unit-IV	Pointers and Strings:	10 hrs
	Pointers- concepts, character pointers and functions, pointers to pointers, pointers and arrays, argument passing using pointers, array of pointers, passing arrays as arguments, String and string functions.	
Unit-V	 Pointers- concepts, character pointers and functions, pointers to pointers, pointers and arrays, argument passing using pointers, array of pointers, passing arrays as arguments, String and string functions. Structures and File handling: Derived types- structures- declaration, definition, passing strings as arguments, programming examples, union. File handling-reading from file, writing in file, updating in file. 	10 hrs
Unit-V Internal	 Pointers- concepts, character pointers and functions, pointers to pointers, pointers and arrays, argument passing using pointers, array of pointers, passing arrays as arguments, String and string functions. Structures and File handling: Derived types- structures- declaration, definition, passing strings as arguments, programming examples, union. File handling-reading from file, writing in file, updating in file.	10 hrs
Unit-V Internal assessment	 Pointers- concepts, character pointers and functions, pointers to pointers, pointers and arrays, argument passing using pointers, array of pointers, passing arrays as arguments, String and string functions. Structures and File handling: Derived types- structures- declaration, definition, passing strings as arguments, programming examples, union. File handling-reading from file, writing in file, updating in file. 	10 hrs
Unit-V Internal assessment CIA-I:	Pointers- concepts, character pointers and functions, pointers to pointers, pointers and arrays, argument passing using pointers, array of pointers, passing arrays as arguments, String and string functions. Structures and File handling: Derived types- structures- declaration, definition, passing strings as arguments, programming examples, union. File handling-reading from file, writing in file, updating in file. Unit I, II	10 hrs 20 Marks
Unit-V Internal assessment CIA-I: CIA-II:	Pointers- concepts, character pointers and functions, pointers to pointers, pointers and arrays, argument passing using pointers, array of pointers, passing arrays as arguments, String and string functions. Structures and File handling: Derived types- structures- declaration, definition, passing strings as arguments, programming examples, union. File handling-reading from file, writing in file, updating in file. Unit I, II Unit I, II	10 hrs 20 Marks 20 Marks

Reference Books:

1. Problem Solving and Program Design in C, by Jeri R. Hanly, Elliot B. Koffman, Pearson Addison-Wesley, 2006.

2. Computer Concepts and Programming by Anami, Angadi and Manvi, PHI Publication.

3. Problem Solving and Programming in C, R.S. Salaria, Khanna Publishing House..

4. Computer Fundamentals and Programming in C. Reema Thareja, Oxford Publication.

BME106-Programming Lab

- 1. Write a program to calculate the area of triangle using formula at= $\sqrt{s(sa)(s-b)(s-c)}$.
- 2. Basic salary of an employee is input through the keyboard. The DA is 25% of the basic salary while the HRA is 15% of the basic salary. Provident Fund is deducted at the rate of 10% of the gross salary (BS+DA+HRA). Program to calculate the Net Salary.
- 3. Write a C program for computation of slope of a straight line with following rules:

A. Consider the equation of line: y = mx+c

B. Here user will provide the value of (x,y and c) the compute slope of line.

- C. If you find the slope of line the also write code to compute the value of "y" at any value of "x" given by user.
- 4. Write a C program to compute your age in number of days by given date of birth.
- 5. Write a C program to print table of any given number.
- 6. Write a C program to compute the factorial of any given number.
- 7. Write a C program to check whether number is prime or not prime.
- 8. Write a C program to print the list of all EVEN numbers upto the given range i.e user will input two numbers start and end; you have to print even numbers in this range.
- 9. Write a C program to print the following pattern:

```
*
**
***
****
***
**
**
**
***
```

- 10. Write a C program to check whether a number is palindrome or not.
- 11. Write a C program to find sum of first and last digit of a numbe.
- 12. WAP in c to merge two different 1-D arrays.
- 13. WAP in c to sort the array elements in ascending order.
- 14. WAP in c to find the median of array elements.
- 15. WAP in c to perform Matrix Multiplication of two matrices, the size of both matrices must be given by the user.
- 16. WAP in c to find that two matrices are equal.
- 17. WAP in c to input your name and print in uppercase letters.
- 18. WAP in c to store your enrolment numbers and print them in reverse order.
- 19. WAP in c to store any enrollment number from your batch, find the branch in enrollment number, and print the branch name.
- 20. Define a structure that can describe a hotel. It should have the member that includes the name, address, grade, room charge and number of rooms. Write a function to print out hotel of given grade in order of room charges.
- 21. Write a program to find the largest no among 20 integers array using dynamic memory allocation.
- 22. Write a program to print all the prime number, between 1 to 100 in file prime.txt.
- 23. Write a program to read number from file and then write all 'odd' number to file ODD.txt & all even to file EVEN.txt.
- 24. Write a c program to copy & count the character content of one file says a.txt to another file b.txt.

25. Write a program to take 10 integers from file and write square of these integer in other file.

Internal assessment		
CIA-I:	Unit I, II	20 Marks
CIA-II:	Unit III and IV	20 Marks
Text Books:		

- 1. Schum"s Outline of Programming with C by Byron Gottfried, McGraw-Hill
- 2. The C programming by Kernighan Brain W. and Ritchie Dennis M., Pearson Education.
- 3. Computer Basics and C Programming by V.Rajaraman , PHI Learning Pvt. Limited, 2015.

Computer Concepts and Programming in C, E Balaguruswami, McGraw Hill

Reference Books:

4. Problem Solving and Program Design in C, by Jeri R. Hanly, Elliot B. Koffman, Pearson

Addison-Wesley, 2006.

5. Computer Concepts and Programming by Anami, Angadi and Manvi, PHI Publication.

6. Problem Solving and Programming in C, R.S. Salaria, Khanna Publishing House.

Computer Fundamentals and Programming in C. Reema Thareja, Oxford Publication.

2nd SEMESTER

BME 107: Engineering Mathematics-II			
Teaching Scheme	Examination Scheme	Credits alloc	cated
Theory 3 h/week+	End of semester Examination-60 marks	Theory-3, Tutorial	-1
Tutorial 1h/week			
Course Prerequisi	te: Knowledge of 10+2 Mathematics.		
Course Objective	: To provide the students with sufficie	nt knowledge of a	differential
equations, higher of	orders, power series and Fourier series, s	o that it can be use	ed in their
respective fields of	Engineering.		
Course Outcomes	On completion this course, students will	be able to	
CO1: Analyze the b	behavior of functions by using differential	equations concepts.	
CO2: To understan	d second order and higher order differentia	al equations.	
CO3:- To understar	nd series solutions and to apply in higher of	rder applications.	
CO4:- Analyze Fo	ourier series, partial differential equation	ons and to apply	in further
synthesis.			
Level	Bachelor		
Course Content:			
Unit -I	Differential equations of first order &	k of first degree:	10 hrs
	Linear form, reducible to linear for	orm, exact form,	
	Reducible to exact form, Picard's Th	eorem (Statement	
	only).		
Unit-II	Unit-2: Differential equations of secon	d & higher order	10 hrs
	with constant coefficients.		
Unit-III	Sequence, Power series, radius of conve	ersions, solution in	10 hrs
	series of second order LDE with variable	e co-efficient (C.F.	
	only). Regular Single points and exter	nded power series	
	(Frobenius Method).		
Unit-IV	Fourier series, half range series, cha	ange of intervals,	10 hrs
	harmonic analysis. Formulation and clas	sification of linear	
	and quasi linear partial differential equ	uation of the first	
	order, Lagrange's method for linear I	Partial Differential	
	Equation of the first order.		
	T. ()		
	Internal assessment	20.14.1	
Part A	CIA-I: Unit I, and II	20 Mark	S
D4 D	CIA-II: Unit III, and IV	20 Mark	S
Part B	ESE: Term Exam	60 Mark	S
1 Emuin Vroyogia	OKS: Advanced Engineering Mathematics, John	Wilow	
1. Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley.			
2 . D. v. Kamana, Π 3 Peter V O'Neil	Advanced Engineering Mathematics, Cen	age Learning New	Dehli
5. Feler V. O Ivell, Advanced Engineering Ivialnematics, Cengage Learning, NewDenli A M Pay, A Tayt Book On Differential equations Students Friends & Co. Agra 2			
5 Robert C Mcowen Partial Differential Equation Pearson Education			
6 George F Simmons & S G krantz Differential Equation Tata McGraw – Hill			
7. R.K.Jain & S R I	X Ivengar, Advanced Engineering Mathem	atics. Narosa	

8. T Amarnath , An Elementary course in partial differential equations, Narosa, New Delhi.

	BME 108: Basic Electronic Engineering		
Teaching Scheme	Examination Scheme	Credits allocated	
Theory 3 hrs/week	End of semester Examination-60 marks	Theory-3	
Practical 2hrs/week	Internal assessment:40 marks	Lab-1	
		Total-4	
Course Prerequisit	e: Students should have basic knowledge on Physics and Mathema	atics	
Course Objective: 1. The studen almost eve 2. To make the electronics 3. Give intro parameters	ts will learn about the concepts and theories of diodes and transis ry electronic device. he students familiar with simple logic principles used in adva and communication. duction to electronic instrumentation used to measure electron.	tors used in ance digital ic/electrical	
Course Outcomes:	On completion this course, students will be able to		
CO1: Lea elec CO2: Uno CO3: Uno theo CO4: Dev	Learn the operation of diodes and transistors and their basic applications in electronic devices. Understand the number system and their interconversions. Understand about digital electronics. They will get insights on digital logics theorems and basic combinational logic devices.		
Course Content:			
Unit -I	Diodes and Applications covering, Semiconductor Diode - Ideal versus Practical, Resistance Levels, Diode Equivalent Circuits, Load Line Analysis; Diode as a Switch, Diode as a Rectifier, Half Wave and Full Wave Rectifiers with and without Filters; Breakdown Mechanisms, Zener Diode – Operation and Applications; Diode as clipper and clampers; Opto-Electronic Devices – LEDs, Photo Diode and Applications	10 hrs	
Unit-II	Transistor Characteristics covering, Bipolar Junction	10 hrs	

	Transistor (BJT) –Construction, Operation, Amplifying	
	Action, Common Base, Common Emitter and Common	
	Collector Configurations, Operating Point, Voltage Divider	
	Bias Configuration; DC and AC load line analysis, Q point;	
	Darlington pair, Field Effect Transistor (FET)	
Unit-III	Binary Numbers, Decimal to Binary and Binary to Decimal	12 hrs
	Conversion, BCD, Octal and Hexadecimal numbers, Negative	
	numbers representation, 1 s, 2 s, Complements, Logic gates	
	and Hamming code Boolean Algebra Basic Theorems and	
	properties of Boolean Algebra Truth Tables and Functionality	
	of Logic Gates – NOT OR AND NOR NAND XOR and	
	XNOR Integrated Circuits (ICs)	
Unit-IV	Measurement, Sensors, Laboratory measuring instruments:	8 hrs
	digital multi-meters and Cathode Ray Oscilloscopes (CRO's),	
	Measurement of resistance (Carey Foster bridge), Capacitance	
	(De Sauty's bridge), and Self-inductance (Anderson's bridge)	
	using different bridges.	
Internal assessment	t	
Part A	CIA-I: Unit I, II and III	20
	CIA-II: Unit IV, V, and VI	20
	EoS	60
Basic Electronics E	Engineering Laboratory	
List of		
Experiments		
1 VICh	areatoristics of Silicon & Cormonium DN Junction diodes	
1. V-I Cli 2 Signal	characterization using CRO. Applications	
3 Diode :	as clipper and clamper	
4. V-I Ch	aracteristics of Zener Diode	
5. Charac	teristics of BJT in Common Emitter Configuration	
6. Regula	ted power supply using Transistor and Zenner Diodes	
7. Half Wave and Full Wave Rectifier Without Filter		
8. Half Wave and Full Wave Rectifier with Filter		
9. Common Emitter BJT Amplifier		
10. Applications of Operational Amplifier		
11. Introduction to Logic Gates		
Text/Reference Bo	ooks:	

- 1. Basic Electronics- Devices, Circuits and IT Fundamentals, Prentice Hall, India.
- 2. Electronics A Systems Approach", 4/e Pearson Education Publishing Company Pvt Ltd, 2011 by Neil Storey.
- 3. Electronic Devices and Circuits" Salivahanan, N Suresh Kumar, 3/e, McGraw Hill Publications, 2013.
- 4. Basic Electronics & Linear Circuits, Bhargava N. N., D C Kulshreshtha and S C Gupta, Tata McGraw Hill, 2/e, 2013

BME 109: Universal Human Values		
Teaching	Examination Scheme	Credits allocated
Scheme		
Theory 3	End of semester Examination-60 marks	Theory-3
hrs/week		
	Internal assessment:40 marks	
Course Prerec	uisite: NA	
a 014		

Course Objective:

- 1. To help the students having the clarity about human aspirations, goal, activities and purpose of life.
- 2. To facilitate the competence to understand the harmony in nature/existence and participation f human being in the nature/existence.
- 3. To help the students to develop the understanding of human tradition and its various components.

Course Outcomes: On completion of this course, students will be able to

- 1. The methodology of this course is exploration and thus universally adaptable. It involves a systematic and rational study of the human being vis-à-vis the rest of existence.
- 2. It is free from any dogma or set of do's and don'ts related to values.
- 3. It is a process of self-investigation and self-exploration, and not of giving sermons. Whatever is found as truth or reality is stated as a proposal and the students are facilitated and encouraged to verify it in their own right, based on their Natural Acceptance and subsequent Experiential Validation.
- 4. This process of self-exploration takes the form of a dialogue between the teacher and the students to begin with, and then to continue within the student leading to continuous self-evolution.
- 5. This self-exploration also enables them to critically evaluate their preconditioning and present beliefs.

	Course Content	
Unit -I	Introduction:	8 hrs
	The basic human aspirations and their fulfillment	
	through Right understanding and Resolution; All-	

	encompassing Resolution for a Human Being, its	
	details and solution of	
	problems in the light of Resolution.	
Unit-II	Understanding Human being and its expansion:	8 hrs
	The domain of right understanding starts from	
	understanding the human being (the knower, the	
	experience and the doer); and extends up to	
	understanding nature/existence – its	
	interconnectedness and co-existence; and finally	
	understanding the role of human being in	
	existence (human conduct).	
Unit-III	Activities of the Self:	8 hrs
	Understanding the human being comprehensively is	
	the first step and the core theme of this	
	course; human being as co-existence of the self and the	
	body; the activities and potentialities of the self; Reasons for harmony/contradiction in the self	
Unit-IV	Understanding Co-existence with other orders:	8 hrs
Oline I V	The need and the process of inner evolution	0 1115
	(through self-exploration selfawareness and self-	
	evaluation)- particularly awakening to activities of	
	the Self Realization Understanding and	
	Contemplation in the Self (Realization of Co-	
	Existence Understanding of Harmony in Nature	
	and Contemplation of Participation of Human in	
	this harmony/ order leading to	
	comprehensive knowledge about the existence).	
Unit-V	Expansion of harmony from self to entire existence:	8 hrs
	Understanding different aspects of All-	
	encompassing Resolution (understanding, wisdom,	
	science etc.). Holistic way of living for Human	
	Being with All-encompassing Resolution covering	
	all four dimensions of human endeavour viz.	
	realization, thought, behavior and work	
	(participation in the larger order) leading to	
	harmony at all levels from self to Nature	
	and entire Existence.	
	Assessment	
Part A	CIA-I: Unit I	20 Marks
	CIA-II: Unit II, III	20 Marks
Part B	End Semester Exam	60 Marks

BME 110: Biomedical Engineering Workshop		
Teaching Scheme	Examination Scheme	Credits
		allocated
Theory 3 hrs/week	End of semester Examination-60 marks	Theory-3
	Internal assessment:40 marks	
Course Prerequisite: NA		
Course Objective: To	gain familiarity with the tools which is widely used in	Biomedical
Engineering.		
C		
Course Outcomes: On	the hosis course, students will be able to	
COI: Understand	the basic concepts of sensors and transducers.	
CO2: Understand	the basic physics of medical instrumentation.	
CO3: Understand	the basic physics of medical imaging systems.	
CO4: Understa	nd the biological function of human body.	
	Course Content	
Unit -I	Sensors and Transducers: Optical, Thermal, Mechanical	10 hrs
	Electrochemical.	
	Patient Monitoring: BP, HR/PR, SPO2, Breathing Rate,	
	Blood group, and components.	
Unit-II	Study of laboratory instruments, basic principle of	10 hrs
	function and handling: analytical lab balance,	
	pipettes, pH meter, biosafety cabinet, autoclave,	
	spectrophotometer, centrifuge and microscope.	
	Preparation of solution (molar, percent and X solutions).	
Unit-III	Visualize various Medical images such as CT. MRI.	10 hrs
	Process images using common tools of medical images	
	such as 3D Slicer. Mango and ITK-Snap	
Unit-IV	Biomedical signals and Instrumentations: ECG_EMG	10 hrs
	FEG PCG EOG	10 1115
	Assessment	
Part A	CIA-I: Unit I	20 Marks
	CIA-II: Unit II, III	20 Marks
Part B End Semester Exam		60 Marks
Essential Read	dings	
3. John C. Webster	, Medical Instrumentation Leighton, Mifflin Co Boston, US	A
4 R S Khandpur	Handbook of Biomedical Instrumentation Tata McGraw	
+. K. S. Manupul Handbook of Diomedical Instrumentation, Tata Meoraw		
mii, Pub. Co.Lte	u., new Deim.	

BME111: Engineering Physics		
Teaching	Examination Scheme	Credits allocated
Scheme		
Theory 3	End of semester Examination-60 marks	Theory-3
hrs/week		
Practical	Internal assessment:40 marks	Lab-1
2hrs/week		
		Total-4
Course Prerequi	isite: Students should have basic knowledge on Physics	
Course Objectiv	/e:	
1. To exp	plain the basic, make up of LASER.	
2. To exp	plain the basics of radiation.	
3. To ext	blain the origin of Ultrasonic waves.	
4. To ext	plain the basics of optical fiber.	
Course Outcom	es: On completion this course, students will be able to	
CO1: Und	derstand the function of LASER.	
CO2: Und	derstand the origin of X-rays and magnetic resonance.	
CO3: Und	derstand the basic physics of medical imaging systems.	
CO4: Un	derstand the basic function of optical fiber.	
Unit -I	Introduction to LASER. Characteristics of LASER beam.	10 hrs
	Spontaneous and stimulated emission of radiation Population	10 1110
	Inversion Difference between Gas and Solid LASER Ruby	
	LASER He-Neon LASER Semi-conductor LASER	
	Application of LASER Properties and Uses of LASER	
	Application of EASER. Hopefules and Oses of EASER.	
Unit-II	Introduction to X-Rays. Origin of X-Ray. Application of X-	10 hrs
	Rays. Application of X-rays in industry and medical	
	applications. Introduction to Magnetic radiation. Application of	
	magnetic radiation. Introduction to MRI.	
		101
Unit-III	Introduction to Ultrasound. Production-properties and	10 hrs
	propagation of ultrasonic waves. Applications of Ultrasound.	
	Different types of Ultrasound mode.	
Unit-IV	Introduction to optical fibers, principle of propagation of light	10 hrs
Unit-1 V	in optical fibers acceptance angle and acceptance cone	10 111 5
	numerical aperture types of optical fibers modes of	
	numerical aperiule, types of optical fibers, filodes of	
	Splices Eusion splice Machanical splice Spus type splice	
	Sphees- Fusion sphee – Multiple galies – Snug tube sphee –	
	Composition SMA STC Displayer - Protection of splice -	
	Connectors: - SNIA – SIC – Bionic etc, - Coupling – Passive –	
	Stan – TEE types.	
Internal assessment		
Part A	CIA-I: Unit I	
	CIA-II: Unit II and Unit III	

	Engineering Physics Laboratory	
	List of Experiments	
1. Study t	he function of Solid LASER.	
2. Study t	he function of Gas LASER.	
3. Study V	3. Study Ultrasound images.	
4. Study 2	4. Study X-ray images.	
5. Study MRI images.		
Text	Books:	
1.	A textbook on Engineering Physics by SO Pillai Sivakami	

BME 112: Engineering Chemistry		
Teaching	Examination Scheme	Credits
Scheme		allocated
Theory	End of semester Examination-60 marks Theory-3, Practical-1	Total 4
3,		Course
Practical		Prerequisite:
2		Knowledge
hrs/week		of 10+2
		Chemistry.
		Course
Total		4
Course O	bjective:	
1. To	understand different types of bonds and interactions.	
2. To	understand the properties of water, thermodynamic principles, concept of buff	fer and redox
reactions.		
3. To study the structure of bio molecules		
4. To understand the application of spectroscopy.		
Course O	utcomes: On completion this course, students will be able to	
1.	1. Derive thermodynamic parameters and apply fundamental laws to solve thermodynamic	
	problems	
2.	Apply the chemistry of pH for biological systems.	
3.	Differentiate between different bio molecules in terms of their structure and prop	erties.
4.	To employ various spectroscopic techniques in identifying the structure and co	rrelate it with
	their properties.	
Level	Bachelor	
	Course Content	
Unit -I	Types of bonds and interactions, Properties of Water, Acid-base and pH	12 hrs
	concept, Henderson-Hasselbalch equation, Buffers, Thermodynamic principle,	

	Concept of free energy and standard free energy change, relationship between standard free energy change and equilibrium constant. Redox reaction and free	
	energy change in redox reaction	
Unit-II	Bio molecules and their properties, amino acids and proteins, properties of amino acids (amphoteric molecules, ionisation, zwitterions, pk values) peptide bond and its geometry, protein structure, carbohydrates, epimers, anomer, glycosidic bond, structural and storage polysaccharides, reducing and non- reducing sugar, nucleotides and nucleic acids, nitrogeneous bases, structure of double stranded DNA_lipids_enzyme and witamins	12 hrs
Unit III	Chromatography, Partition Chromatography, Size exclusion Chromatography	12 hrs
Unit-III	Ion Exchange Chromatography Affinity Chromatography Spectroscopy	12 1118
	Absorbtion spectroscopy Beer-Lambert's law Fluorescence spectroscopy	
	Nuclear Magnetic resonance Mass spectroscopy Infrared spectroscopy	
	Internal assessment	
Part A	CIA-I: Unit I	20 Marks
1 41 0 11	CIA-II: Unit II and III	20 Marks
Part B	ESE: Term Exam	60 Marks
Text/Refe	rence Books:	
	1. Introduction of fundamentals of spectroscropy, by C.N Banwell.	
	2. Molecular Spectroscopy-C. N. Banwell& McCash	
	3. University chemistry, by B. H. Mahan.	
	4. Lehninger: Principles of Biochemistry, Nelson, D.L. and Cox	
	5. Fundamental of Biochemistry, Voet and Voet- provide necessary details on	latest edition
	Edited by Prof. Hiren K Das (JNU)	
List of exp	periments:	
	1. Safety measure in laboratories, use and calibration of pipettes	
	2. Chromatography of amino acids.	
	3. Study of colorimetery.	
	4. Spectrophotometery principles.	
	5. Study of pH meter and titration curve	
	6. Quantitative estimation of glucose.	
	7. To examine reducing and non-reducing sugars.	
	8. To estimate protein concentration- Lowry method	
	9. To estimate nucleic acids	
	10. Investigation of redox reaction.	· · ·
11. Determination of specific rotation of a given optically active compound and %composition of its aqueous solution using Polarimeter.		
<u> </u>		

SEMESTER III

BME 201: Biomechanics		
Teaching	Examination Scheme	Credits
Scheme		allocated
Theory 3	End of semester Examination-60 marks	Theory-3
hrs/week		
	Internal assessment:40 marks	
Course Prerequ	lisite: NA	
Course Objec	tive:	
1. To study var	rious principles of Biomechanics and vector mechanics	
2. To employ	various mechanics rules with the equilibrium of coplanar forces	
and forces used	d in fluid flow.	
Course Outco	mes: On completion of this course, students will be able to	
1. Learn variou	is theorems which help to understand the biomechanics forces.	
2. Understand	the mechanism of body fluid flow.	
	Course Content	
Unit -I	Review of principles of mechanics, vector mechanics -	10 hrs
	resultant forces of coplanar and non- coplanar and concurrent	
	and non-concurrent forces, parallel forces, equilibrium of	
	coplanar forces, Newton's laws of motion, work and energy,	
	moment of inertia; Analysis of rigid bodies in equilibrium,	
	free body diagrams, system analysis in equilibrium, types of	
	support or joint, Analysis of joints in various postures, Basic	
	assumptions and limitations, biomechanical analysis of elbow,	
	shoulder, spinal column, hip knee and ankle	
Unit-II	Forces involved in blood flow, general Bernoulli's equation,	10 hrs
	wind Kessel model, the stress in the ventricular wall, pressure-	
	volume loop. Hagen-poiseuille law – derivation and	
	applications, steady laminar flow in elastic tube, wave	
	propagation in blood, reflection and transmission of waves at	
	arterial junctions, blood flow in veins, microcirculation	
Unit-III	Mechanism of airflow, respiratory cycle, lung ventilation	10 hrs
	model, methods of determining pressure, flow rate and volume	
	spirometry, respiratory plethysmography, diagnostic	
	significance of the lung-ventilation model, static and dynamic	
	respiratory mechanics tests; Design of orthopedic implant,	
	specifications for a prosthetic joint, biocompatibility,	
	requirement of a biomaterial, characteristics of different types	
	of biomaterials, manufacturing process of implants, fixation of	
	implants.	
Assessment		
Part A	CIA-I: Unit I	20 Marks
	CIA-II: Unit II, III	20 Marks

	Part B	End Semester Exam	60 Marks
	Essei	ntial Readings	
1.	YCFung, I	Biomechanics: MechanicalPropertiesofLivingTissues, Springer, 2	2ndEdition,
	1993.		
2.	N. Ozkaya	andM. Nordin, Fundamentals of Biomechanics-Equilibrium, M	Motion and
	Deformatio	on, Springer-verlag, 2nd Edition1999	
3.	J. GWebst	er, Medical Instrumentation –Application and design, JohnWil	eyand sons
	Inc. 3rded.	2003.	
4.	D. Dowso	n and V. Wright, An introduction to Biomechanics of joints	s and joint
	replacemen	nts, Mechanical Engineering	
5.	Publication	ns, 1980	
6.	Y. C. Fung	, Biodynamics-circulation, Springer-Verlag, 1994.	

BME202 Electronics Devices And Circuits			
Teaching	Examination Scheme	Credits	
Scheme		allocated	
Theory 3	End of semester Examination: 60 marks	Theory-3	
hrs/week			
	Internal assessment: 40 marks		
Course Prerequ	usite: NA		
Course Objec	tive:		
• Understand apply for di	the semiconductor devices principles and their performances fferent purposes.	to	
Comply and	d verify the device parameters.		
• Simulate e desired resu	• Simulate electronics circuits using required simulation software to obtain desired results.		
• Understand	• Understand and verify simulated circuit with hardware implementation.		
• Implement hardwired circuit to test performance and application for what it is being designed.			
• Analyze an	• Analyze and model for small signal BJT and MOSFET devices		
• Understand	and apply the concept of feedback to tune the device	es	
performanc	performances.		
• Understand	the behavior of transistors at low and high frequency		
Course Outco	mes: On completion of this course, students will be able to		
• To introduc	e the students to details concept on semiconductor devices (such	as	
BJT, MOSI	BJT, MOSFET).		
• To introduc	• To introduce the concept of positive and negative feedback in electronic circuits.		
• To analyse	and interpret FET and MOSFET circuits for small signal at 1	ow and	
high frequencies.			
	Course Content		
Unit -I	Bipolar Junction Transistors DC Circuits	10 hrs	
	Transistor Configurations: CE,CB and CC, The Operating		

	Point, Bias Stability, Transistor, Fixed bias, Emitter Bias, Self	
	Bias etc., Stabilization against Variations in ICO, VBE and β ,	
	Bias Compensation Techniques, Thermal Runaway, Thermal	
	Stability.	
Unit-II	BJT at Low Frequencies	10 hrs
	Two Port Devices and the Hybrid Model, Transistor Hybrid	
	Model, Small Signal Amplifier Performance in terms of h-	
	parameters, exact analysis of BJT CE, Comparison of CE, CC	
	& CB Amplifier's performance parameters, High Input	
	Impedance Transistor Circuits.	
Unit-III	BJT at High Frequency	10 hrs
	Frequency Response of an Amplifier, Step Response of an	
	Amplifier, Bandpass of Cascaded Stages, RC-Coupled	
	Amplifier, Low-Frequency Response of an RC-Coupled Stage,	
	The Hybrid- π Common-Emitter Transistor Model, Hybrid- π	
	Conductance, The Hybrid- π Capacitances, The CE short-	
	Circuit Current Gain, Current Gain with Resistive Load.	
Unit-IV	Feedback amplifiers and Oscillators	10 hrs
	The Feedback Concept, The Transfer gain with Feedback,	
	General Characteristics of Negative- Feedback Amplifiers,	
	Topologies of Negative-Feedback, Summery of Effect of	
	Negative- Feedback on Gain, Input Resistance, Output	
	Resistance & Bandwidth of Amplifier, Sinusoidal Oscillators,	
	The Transistor Phase-Shift Oscillator, A General form of LC	
	Oscillator Circuit, Transistor Hartley & Colpitts Oscillator.	
Unit-V	Large Signal Low Frequency Amplifiers	10 hrs
	Classification of Amplifies, Class A Large-Signal Amplifiers,	
	Second –Harmonic Distortion, The Transformer-Coupled	
	Audio Power Amplifier & it's Efficiency, Class B Amplifiers,	
	Class B Push-Pull & Complementary-Symmetry Amplifier,	
	Class AB Operation.	
Dout A	Assessment	20 Manlea
Part A		20 Marks
D4 D		20 Marks
Part B	End Semester Exam	60 Marks
Esser		
1.	Millman Halkias, "Integrated Electronics-Analog and Digital	
	Circuits and Systems", Tata McGraw Hill, 2000.	
2.	Donald Neaman, "Electronic Circuit Analysis and Design",3r	d
	Edition, Tata McGrawHill.	
3.	David A.Bell, "ElectronicDevicesandCircuits", 5thEdition, Oxfo	rd press
4.	R. L. Boylstad, and L. Nashlesky, "Electronic Devices and	
	circuits Theory", 9th Edition, Prentice Hall of India, 2006.	
5.	Anil K. Maini and Varsha Agarwal "Electronic Devices and Cir	cuits".
	Wiley India.	,
6.	Phillip E. Allen, Douglas R. Holberg, "CMOS Analog Circuit	
----	--	
	Design", Second Edition, Oxford.	

7. K. R. Botkar, "Integrated Circuits", 5th Edition, Khanna Publication.

BME203-Molecular And Cellular Biology				
Teaching	Examination Scheme	Credits		
Scheme		allocated		
Theory 3	End of semester Examination: 60 marks	Theory-3		
hrs/week		-		
	Internal assessment: 40 marks			
Course Prerequ	uisite: NA			
Course Objec	tive:			
To enable B.To	ech. students learn basics of cell and molecular biology			
Course Outco	mes: On completion of this course, students will be able to			
	•			
	Course Content			
Unit -I	Introduction of Eukaryotic vs. Prokaryotic cell. Components	10 hrs		
	of Eukaryotic Cell (Cell Organelles- Nucleus, Endoplasmic			
Reticulum, Golgi Apparatus, Mitochondria, Lysosome,				
Peroxisome Protein Sorting & Transport – Cytoskeleton& Cell				
	Movement – The Plasma Membrane). Structure and function			
	of macromolecules- Carbohydrate, lipids, protein and DNA,			
	RNA. Cell Cycle: stages, regulation of cell cycle specific			
	genes, cellular aspects of diseases. Central Dogma of			
	Molecular Biology.			
Unit-II	Cell signaling, Receptors for Cell Signaling and Signaling	10 hrs		
	Pathways. Cell Junctions: Types and structure of junctions			
	(Desmosomes, Hemi-desmosomes, Adherens junctions, Tight			
	junctions, Gap junction) Cell Adhesion Molecules:			
classification (NCAM, Cadherin, Integrins etc.), function Cell				
surface.				
Unit-III	Unit-III Receptors: Ion linked Receptors, Enzyme Linked Receptors,			
Cytokine Receptor superfamily, GPCR Signal Transduction				
via Surface Receptors: Emphasis on GPCR pathways, cAMP				
	Signaling from Receptor to Function Dual Signaling Pathway:			
Inositol phosphates and protein kinase C, calcium &				
calmodulin Cross-Talk, signal amplification & cascade				
mechanisms.				
Assessment				
Part A	CIA-I: Unit I	20 Marks		
	CIA-II: Unit II, III	20 Marks		
Part B	End Semester Exam	60 Marks		

ESSENTIAL READING

- G. Karp, Cell and Molecular Biology: Concepts and Experiments, Wiley
- G. Nindl Waite, Applied Cell and Molecular Biology for Engineers, McGraw-Hill
- B. Alberts, Molecular Biology of the Cell, Garland Science

BME204-Circuit Theory and Network Analysis			
Teaching	Examination Scheme	Credits	
Scheme		allocated	
Theory 3	End of semester Examination: 60 marks	Theory-3	
hrs/week			
	Internal assessment: 40 marks		
Course Prerequi	isite: 10+2 physics and linear algebra		
Course Objecti	ive: To introduce the fundamentals of electrical network analysis	s using graph	
theory, matrices	s, differential equations, network theorems, symmetrical compon	ent analysis.	
To introduce tra	ansient network analysis and their application.		
To introduce mu	ultiport network, network function and network synthesis technic	ques.	
Course Outcon	nes: On completion of this course, students will be able to		
CO1: Understar	nd the use of network topology and network solving techniques for	or solving	
complex electric	cal networks.		
CO2: Understar	nd the importance of transients in electrical circuits and can apply	y to real life	
problem.			
CO3: Students v	would be able to know various two port parameters, network fund	ctions, pole	
zero plot and the	e time domain behavior of electrical networks.		
CO4: Students v	would be able to design and analyze passive electrical circuits us	ing network	
synthesis techni	ques and the basic idea about electrical filters.		
	Course Content		
Unit -I	Network Topology: Concept of network graphs, tree, link, cut	9 hrs	
	set, network matrices, node incidence matrix, loop incidence		
	matrix, cut set incidence matrix, Formulation and solution of		
	network equilibrium equations on loop and node basis		
Unit-II	Network Analysis Techniques and Theorems: Elements of	12 hrs	
	electrical circuits and their properties, Mesh current and Node		
	voltage analysis using matrices, Thevenin's, Norton's,		
	Superposition, Maximum power transfer theorem, Substitution		
	theorem, Compensation theorem, Reciprocity theorem,		
	Millman's theorem, Tellegen's theorem for AC and DC		
	networks, Duality and concept of dual network, Resonance in		
	series and parallel circuits. Transient Network Analysis:		
	Laplace transform fundamentals, properties, initial and final		
	value theorems, convolution integral, waveform synthesis,		
	Response of RL, RC and RLC networks using Laplace		
	Transforms for unit step, impulse, ramp, sinusoidal,		
	exponential and combination of these inputs, application of		
	transient network analysis.		

	-		
Unit-III	Two-port networks and Network functions: z-parameters,	12 hrs	
	yparameters, h-parameters, and ABCD parameters; reciprocity		
	and symmetry in two-port networks, image and iterative		
	impedances: poles and zeros driving point and transfer		
	functions, restrictions on poles and zeros for network		
	functions, restrictions on poles and zeros for network		
	functions, time domain benavior from pole zero plot.		
Unit-IV	Network Synthesis: Poles and zeros of network functions,	9 hrs	
	positive real functions and their properties, tests for positive		
	real functions, Hurwitz polynomials; Driving-point synthesis		
	of LC, RC and RL networks, Foster forms and Causer forms.		
	Introduction to filters.		
Assessment			
Part ACIA-I: Unit I2		20 Marks	
	CIA-II: Unit II, III	20 Marks	
Part B End Semester Exam		60 Marks	
ESSENTIAL READING			
• Text/Reference Books: 1. M.E. Valkenburg, "Network Analysis," 3rd Ed., Pearson			
Prentice Hall, 2006.			
• F. F. Kuo, "Network Analysis and Synthesis" 2nd Ed. Wiley India 2007			
• F. F. Kuo, Network Anarysis and Synthesis, 2nd Ed., whey india, 2007.			
• W.H. I	• W.H. Hayt, J. E. Kemmerly and S. M. Durbin, "Engineering Circuit Analysis," 6th		
Edition, Tata McGraw Hill, 2007.			
• C.K. Alexander and M.N.O. Sadiku, "Fundamentals of Electric Circuits," 3rd Edition,			

Tata McGraw Hill, 2008. 5. Sudhakar, S S Palli, "Circuits and Networks", 2nd Edition, Tata McGraw Hill.

BME 205-Human Anatomy & Physiology			
Teaching	Examination Scheme	Credits	
Scheme		allocated	
Theory 3	End of semester Examination: 60 marks	Theory-3	
hrs/week			
	Internal assessment: 40 marks		
Course Prerequ	uisite: NA		
Course Objec	tive:		
1. To enable B.Tech students to learn the basics of Human Anatomy and			
Physiology.			
2. To explain the different biological systems with their working, importance,			
types, and associated diseases.			
Course Outcomes: On completion of this course, students will be able to			
CO1: Explain the knowledge of basic human physiological and anatomical aspects.			
CO2: Describe students with updated knowledge of blood group testing and an overview of			
the immune system and the nervous system.			
CO3: Explain the musculoskeletal system and respiratory systems with their working,			
significance, types, importance, and associated diseases.			
CO4: Describe the physiology and anatomy of gastro urinal systems and cardiovascular			

systems.				
	Course Content			
Unit -I	Unit -I Important Blood Vessels of different parts of body. Blood Cell			
	– Composition – Fluid and electrolytic balance - Blood			
	Groups – Estimation of RBC, WBC, and platelet. Overview of			
	Immune system – Immune response – models of immune			
	response – Autoimmune diseases.			
Nervous System – Structure and functions of Neurons,				
Synapse, Reflex action, and Receptors – Velocity of				
	Conduction of Nerve Impulses – Nervous control of Heart.	101		
Unit-II	Musculo Skeletal System – Muscle Tissue, Structure of	10 hrs		
	Skeletal Muscle, Types of Muscle, Types of Joints, Major			
	Muscles of Limbs, and their actions. Respiratory system -			
	Various parts of Respiratory System-Irachea, Bronchial tree,			
	Lungs, Physiological aspects of respiration - Exchange of			
gases – Regulation of Respiration. Disturbance of respiration				
function. Pulmonary function test – Artificial respiration –				
Unit III Costro United system Disastion and shormation Maximum		101		
Unit-III	Gastro Urinal system, Digestion, and absorption – Movement	10 nrs		
	Mechanism of Urine formation – Urine Reflex – Skin and			
Sweat Gland – Temperature regulation Cardiovascular system				
Heart and vascular system Lymphatic System ECG Blood				
- Heart and Vascular System, Lymphatic System ECG - Blood Pressure Homeostesis Cordina output Coronery and				
Pressure – Homeostasis – Cardiac Output – Coronary and Deripherel Circulation – Heart Sounds Pohr offect Applied				
Peripheral Circulation – Heart Sounds. Bonr effect, Applied				
aspects, ventilators, Oxygen Therapy.				
	Assessment			
Part A	CIA-I: Unit I	20 Marks		
	CIA-II: Unit II, III	20 Marks		
Part B End Semester Exam		60 Marks		
ESSENTIAL READING				
• Sujit K.Chaudhuri – Concise Medical Physilogy – New Central Book agency, 1997				
• Arthur.C.Guyton – Textbook of Medical Physiology – Prism Book (p) Ltd. 1996.				
• CL Ghai – A textbook of Practical physiology – 5th Ed Jaypee Medical Publishers				
2003				
• Sarada Subramanyam, K.Madhayan Kutty and H D Singh – Text book of 'Human				
Physio	Physiology S.Chand & Company, 1996			

BME 206 electronic devices and circuits Lab			
Teaching	Examination Scheme	Credits	
Scheme		allocated	
Practical 2	End of semester Examination: 60 marks	Practicals-	
hrs/week		2	
Course Drome or	Internal assessment: 40 marks		
Course Prerequ	tivo:		
1 To introdu	uve.	ich as BIT	
MOSFET).		ion us 201,	
2. To introdu	ce the concept of positive and negative feedback in electronic circ	cuits.	
3. To analyst frequencies	e and interpret FET and MOSFET circuits for small signal at lo	w and high	
Course Outco	mes: On completion of this course, students will be able to		
CO1: Have c	omplete knowledge on the operation of semiconductor devices.		
CO2: Improv	ve experimental skill on various circuit and devices.		
CO3: Have a	details knowledge on the concept of positive/negative feedback a	and various	
oscillators	Course Content:		
1) Construct	the HW FW and Bridge rectifier using IN4007 diode on Breadb	oard	
1) Construct	aligner alapper and doubler of diada using DSO	Jaru	
2) Study of 2	chipper, champer and doubler of diode using DSO		
3) Construct	the regulated power supply using Zenner diode and Transistor		
4) Construct the CE/CB/CC Transistor Configuration for the verification of input and			
output Characteristics. Find out the h-parameter values from CE IV characteristics.			
5) Verify Do	C operating point for a single stage BJT in CE configuration.		
 Calculate values biasing resistors (R1,R2,RE) to operate BJT at a certain VCEQ & ICQ 			
• Buil	d the circuit with these components Measure VCEQ, ICQ, IBQ ar	nd VBEQ	
and	Compare measured quantities with theoretical values		
6) Build and	l test single stage CE amplifier.		
• Con	nect coupling and emitter bypass capacitors		
• To measure the voltage gain, input resistance (Ri), output Resistance (Ro) of the amplifier.			
• Verify phase difference between input and output voltage. To measure the bandwidth using square wave testing.			
7) Simulate & AC An	a Single stage BJT amplifier (CE, CB and CC) for given specificatelysis)	tions.(DC	
• To r	neasure the voltage gain (AV), input resistance (Ri), output		
• Resi	stance (RO) of the CE, CB and CC amplifier.		
• To c diff	bserve and print input and output waveforms to understand the preference in each configuration.	nase	

- 8) Construct frequency response of single stage CE RC coupled amplifier
 - To study the effect of coupling capacitor and bypass capacitor on low frequency response.
 - To study effect of external shunting capacitor on high frequency response (To restrict bandwidth).
 - To understand dominant RC circuit for fL and fH.
- 9) Voltage-Series feedback amplifier
 - To identify topology of feedback with proper justification.
 - To measure voltage gain, input resistance, output resistance and bandwidth (using square wave testing) for without feedback.
 - To measure voltage gain, input resistance, output resistance and bandwidth (using square wave testing) for with feedback.

• To verify the improvement in various parameters as per the derived equations.

10) Simulation of current shunt feedback amplifier

- To identify topology of feedback with proper justification.
- To measure current gain, input resistance, output resistance and bandwidth for without feedback.
- To measure current gain, input resistance, output resistance and bandwidth for with feedback.
- To verify the improvement in various parameters as per the derived equations.
- 11) Simulation of transistorized oscillator
 - Implement the Phase shift oscillator.
 - Verify Barkhausen criteria.
 - Implement the crystal oscillator (series / parallel resonance circuit).
 - To observe the output voltage waveform.
 - To calculate frequency of oscillation theoretically and practically.

12) Build & Test transistorized oscillator

- Implement the LC (Colpitts / Hartley) oscillator.
- Verify Barkhausen criteria.
- To observe the output voltage waveform.
- To calculate frequency of oscillation theoretically and practically.
- 13) Complementary Symmetry push pull amplifier
 - To verify DC condition
 - To understand class of operation.
 - To calculate the percentage conversion efficiency.
 - To calculate power dissipation of both transistors.
 - To observe and elimination of crossover distortion.

Assessment			
Part A	CIA-I	20 Marks	
	CIA-II	20 Marks	
Part B	End Semester Exam	60 Marks	

BME 207 Cell and Molecular and Cellular Biology Laboratory			
Teaching	Examination Scheme	Credits	
Scheme		allocated	
Practical 2	End of semester Examination: 60 marks	Practicals-	
hrs/week		2	
	Internal assessment: 40 marks		
Course Prerequ	uisite: NA		
Course Objec	tive:		
To includes the	e study of the Cell and Molecular Biology		
Course Outco Understand the	mes: On completion of this course, students will be able to e importance of Cell and Molecular Biology		
	Course Content:		
1. Preparation	of different stock solutions used in molecular biology (Solution	ons used in	
PCR, electrophoresis, DNA isolation, RNA isolation and Protein isolation)			
2. Isolation of	DNA from human blood Quantification of DNA and RNA throug	h	
spectrophotometer4- DNA amplification through polymerase chain reaction			
3. Separation of different sized DNA fragments on agarose gel			
4. Downloadin	g various sequences from GenBank in FAST format, 10.		
5. Demonstrat	ion of BLASTn, BLASTp and phylogentic tree preparation using	MEGA	
software.			
6. Isolation of	different cell organelles from cell		
7. Study of Spe	ectrophotometry.9Study of pH meter.		
8. Study of Fla	me photometry-Analysis of Na and K in an unknown sample.		
9. Quantitative	estimation of glucose.		
10. Quantitative estimation of Urea.			
11. Quantitative estimation of Creatinine.			
Assessment			
Part A	CIA-I	20 Marks	
	CIA-II	20 Marks	
Part B	End Semester Exam	60 Marks	

BME 208 Human anatomy and physiology laboratory			
Teaching	Examination Scheme	Credits	
Scheme		allocated	
Practical 2	End of semester Examination: 60 marks	Practicals-	
hrs/week		2	

Internal assessment. 40 marks	Internal	assessment:	40	marks
-------------------------------	----------	-------------	----	-------

Course Prerequisite: NA

Course Objective:

Anatomy Laboratory

To study systemic anatomy i.e., the structure and position of the systems in the human body like the respiratory, circulatory, digestive, urinary, reproductive, endocrine and nervous systems.

Physiology Laboratory

This course deals with the overall functioning of a living organism which has undergone a variably rapid change all through its process of evolution. Casting a systematic array of different systems such as respiratory, circulatory, neuro-muscular mechanisms, stimuli propagation etc, emphasizing on the clinical importance of the same.

Course Outcomes: On completion of this course, students will be able to

Anatomy Laboratory

- 1- Understand the various human tissue structures.
- 2- Identify different organs of the body and their locations.
- 3- Able to identify the different lobes of the brain.
- 4- Able to perceive the importance of a dissertation.
- 5- Able to identify different joints and their importance.

Physiology Laboratory

- 1. Able to record BP.
- 2. To evaluate visual, auditory systems in human being.
- 3. Able to record various biopotentials.
- 4. Able to record and evaluate respiratory system.
- 5. To understand the muscular activity.

Course Content

Anatomy Laboratory

No. of Experiments

1-Histology-Slides of primary tissues of body Study of Gross anatomy of the human body

- 2-Study of dissected Upper Limb
- 3-Study of dissected Lower Limb
- 4-Study of dissected Brain
- 5- Study of dissected Thorax-Heart
- 6- Study of dissected Thorax-Major Blood Vessels
- 7- Study of dissected Thorax-Various parts of respiratory system-Trachea, Lungs.
- 8- Study of dissected abdomen-Digestive organs.
- 9- Study of dissected abdomen-Other abdominal organs.

Physiology Laboratory

1. Recording of B.P. by different methods.

2. Effect of ex	ercise on BP		
3. Effect of po	sture on BP		
4. Vital capaci	ty by Spiro meter		
5. Effect of po	sture on Vital capacity		
6. Calculation	of Vital Index		
7. Recording of EMG and ECG			
8. Examination of Sensory system			
9. Examination of Motor System			
10. Study of Rate of Conduction of Nerve impulse.			
Assessment			
Part A	CIA-I	20 Marks	
	CIA-II	20 Marks	
Part B	End Semester Exam	60 Marks	

SEMESTER-IV

BME 209: Signals, and System Design				
Teaching		Credits		
Scheme	Examination Scheme allocat			
Theory 3	End of semester Examination: 60 marks Theory			
hrs/week				
	Internal assessment: 40 marks			
Course Prerequ	uisite: NA			
Course Objec	tive:			
• To unders	tand basic of signals and systems.			
• To unders	tand design and realization of filter.			
• To unders	tand biomedical signal processing.			
Course Outco	mes: On completion of this course, students will be able to			
• To learn b	asic of signals, systems and their classification.			
• To learn d	lesigning and realization of filter and digital filter.			
• To learn b	nomedical signal processing			
	Course Content			
Unit -I	Basics of signals and systems:	10 hrs		
	Signals and system: Representation of continuous and discrete	10 110		
	time signals, Elementary signals, Basic Operation on Signals,			
	Classification of Signals, systems and its classification.			
	Transform Theory: Fourier Transform, Discrete Fourier			
	transform, Fast Fourier Transform, Z Transform, ROC and			
	pole -zero placement, Impulse and step response.			
Unit-II	Filters: Realization of Various Filters (LP, HP, BP, BS,	10 hrs		
	Notch), Transfer Function & Frequency Response; Magnitude			
	and Delay Response.			
	Digital Filter: Design of Finite Impulse response and Infinite			
	Impulse Response digital filter, realization of Digital Filter.			
Unit-III	Biomedical Signal Processing: Noises and Artifacts Present in	10 hrs		
	ECG and EEG signal, Removal of Noise and Artifacts from			
	ECG and EEG, ECG signals characteristics; The P, QRS, and			
	T waves in the ECG, QRS detection, ST segment analyser,			
	Arrhythmia analyser. EEG rhythms & waveform			
	categorization, Correlation Analysis of EEG Rhythms,			
	Detection of EEG rhythms.			
	Assessment			
Part A		20 Marks		
De st D	CIA-II: Unit II, III	20 Marks		
Fart B	End Semester Exam	ou marks		
LOSENTIAL	KLADINGS			
Oppenl	neim, A.V., Willsky, A.S. and Nawab, S.H., 2012. Signals and sys	stems, PHI		
learnin	g Pvt. Ltd.			

• Salivahanan S., Vallavraj A., Gnanapriya C, 2005. Digital Signal Processing, Tata

McGraw Hill Publishing.

- Lathi, B.P., 1965. Signals, systems and communication. John Wiley & Sons Canada.
- Kani, A.N., 2010. Signals & Systems. Tata McGraw-Hill Education.
- Rangayyan, R.M., 2015. Biomedical signal analysis (Vol. 33). John Wiley & Sons.
- Reddy, D.C., 2005. Biomedical signal processing: principles and techniques. McGraw- Hill.

BME210-Biomedical Instrumentation		
Teaching Scheme	Examination Scheme	Credits allocated
Theory 3 hrs/week	End of semester Examination: 60 marks	Theory-3
	Internal assessment: 40 marks	
Course Prerequ	uisite: NA	
Course Objec	tive:	
• To study	different types of biomedical electrode and sensors.	
• To study	different types of biomedical devices.	
• To study	patient monitoring system and safety in hospital.	
Course Outco	mes: On completion of this course, students will be able to	
• To learn d	lifferent types of biomedical electrode and sensors.	
• To learn d	lifferent types of biomedical devices.	
• To learn patient monitoring system and safety in hospital.		
	Course Content	
Unit -I	Basics of Biomedical Instrumentation: Bioelectric potential	10 hrs
	and Electrodes- Basis concepts of medical instrumentation	
	Resting and action potential, electrode theory, Bio potential	
	electrodes, Electrodes and sensors for ECG, EEG, EMG,	
	ERG, and EOG, micro electrodes, skin surface electrodes.	101
Unit-II	Biomedical Devices: working principle, measuring procedure	10 hrs
	and applications of Pacemaker, Audiometer, Denominator,	
	Electrosurgical Unit: Principles of cutting coagulation	
	fulguration: Electrosurgical generators: spark gap & solid-state	
	generators. Safety features.	
Unit-III	Patient Monitoring systems: Cardiac monitors, bedside	10 hrs
	monitors, central monitors, Biomedical measurement and	
	devices for heart rate, pulse rate, temperature, Blood pressure,	
	respiration rate. Pulmonary function measurements.	

Electrical hazards in hospitals: Patient electrical safety, types		
of hazards, patient isolation, physical effects of current, let go		1
	current, Micro shocks, different ways for electrical accident to	1
	occur, safety instruction circuits, electrical grounding &	1
	effects.	L
	Assessment	
Part A	CIA-I: Unit I 20 Mar	
	CIA-II: Unit II, III	20 Marks
Part B	art BEnd Semester Exam60 M	
ESSENTIAL	READINGS	
5. John C	. Webster, Medical Instrumentation Leighton, Mifflin Co Boston,	USA
6. R. S. Khandpur Handbook of Biomedical Instrumentation, Tata McGraw		
hill, Pu	ıb. Co.Ltd., New Delhi.	
7. Applied Biomedical Instrumentation, La Geddes and L.E. Baker. Dewhurst, D.J.,		

2014. An Introduction to Biomedical Instrumentation: Pergamon International Library of Science, Technology.

BME 211 Pathology and Human disease			
Teaching	Examination Scheme	Credits	
Scheme		allocated	
Theory 3	End of semester Examination: 60 marks	Theory-3	
hrs/week			
	Internal assessment: 40 marks		
Course Prereq	uisite: NA		
Course Objec	tive:		
• To enable	e B.Tech students learn Provide a framework for understanding t	the	
pathophys	siologic mechanisms responsible for diseases of major public hea	lth	
importanc	ce.		
• Explain	the pathologic processes underlying structural and function	nal	
disorders	and their clinical significance.		
• Describe	• Describe variables or risk factors influencing the adaptive potential of		
individua	ls within their environment and throughout their life span.		
Course Outco	mes: On completion of this course, students will be able to		
•			
~ ~ ~ .			
	Course Content	101	
Unit -I	General pathophysiology: Cells, tissues, organ structure and	10 hrs	
	function. Pathophysiologic mechanisms of acute and chronic		
	injury, necrosis/apoptosis & tissue repair (the healing process).		
	Cardiovascular diseases: Hyperlipidemia, atherosclerosis,		
	coronary artery disease, hypertension, heart failure,		

	thromhoses and stroke			
Unit II	Riomedical Davices: working principle, measuring procedure	10 brs		
Omt-n	and applications of Pacemaker Audiometer Defibrillator	10 1113		
	ECC EEC EMC DCC EPC and ECC			
	EUG, EEG, EMG, FUG, EKG, allu EUG.			
	Electrosurgical Unit: Principles of cutting, coagulation,			
	fulguration; Electrosurgical generators: spark gap & solid-state			
	generators, Safety features. Cancers: Molecular basis for			
	cancer development and progression, etiologic factors related			
	to development of cancer, kinetics of tumor growth and the			
	genetic contribution to cancer. Specific cancers covered in the			
	course include lung, breast, colorectal, cervix, and prostate.			
	Infectious diseases: Immune function and immune pathology,			
	categories of infectious agents, mechanisms and pathogenesis			
	of infectious diseases, tuberculosis, malaria, influenza, and			
	HIV/AIDS.			
Unit-III	Chronic health conditions: An overview of the genetic	10 hrs		
	contribution to chronic disease, obesity, diabetes mellitus,			
	chronic obstructive pulmonary disease (COPD), renal disease,			
	and Alzheimer's disease.			
	Assessment			
Part A	CIA-I: Unit I	20 Marks		
	CIA-II: Unit II, III	20 Marks		
Part B	End Semester Exam	60 Marks		
ESSENTIAL	READINGS			
• The Na	ture of Disease-Pathology for the Health Professions. Author	or:		
McConr	all Publisher: Linningott Williams & Wilking second editid	on		
2014	ich, Fublisher. Elpphiebu winnams & Wirkins, second eutic	л,		
2014.				

BME 212-Biomaterials		
Teaching	Examination Scheme	Credits
Scheme		allocated
Theory 3	End of semester Examination: 60 marks	Theory-3
hrs/week		
	Internal assessment: 40 marks	
Course Prerequ	uisite: NA	
Course Objec	tive:	
•		
Course Outco	mes: On completion of this course, students will be able to	
•		
	Course Content	
Unit -I	Fundamentals of biomaterials science. Concept of	10 hrs
	biocompatibility. Classes of biomaterials used in medicine,	

	hasic properties medical requirements and clinical				
	significance Disinfection and sterilization of biomaterials				
	Physico-chemical properties of biomaterials: mechanical				
	(elasticity yield stress ductility toughness strength fatigue				
	hardness wear resistance) tribological (friction wear				
	lubricity) morphology and texture physical (electrical				
	optical magnetic thermical) chemical and biological				
	properties				
Unit-II	Flements in contact with the surface of a biomaterial: blood	10 hrs			
	composition plasma proteins cells tissues	10 1113			
	Phenomena at the bio interfaces Molecular and cellular				
	processes with living environment blood-materials				
	interaction short- and long-term reactions to the body				
Unit-III	Testing of biomaterials: in vitro in vivo preclinical and in 10 brs				
enit in	vivo clinical tests	10 1115			
	Technologies of biomaterials processing, as implants and				
	medical devices; improvement of materials biocompatibility				
	by plasma processing.				
Assessment					
Part A	CIA-I: Unit I	20 Marks			
	CIA-II: Unit II, III	20 Marks			
Part B	End Semester Exam	60 Marks			
ESSENTIAL	READINGS				
H.Boeni	g, Fundamentals of Plasma Chemistry and Tehnology, Technom	ic			
Publishi	ngCo.Inc. Lancaster Basel, 1990. 2. Practical Surface Analysis.				
• 2ndedition Edited by D Briggs M P Seah J Wiley & Sons Ltd, 1990					
Biomaterials Science An Introduction to Materials in medicine Eds P. D.					
Potner and A. S. Hoffman, Academia Press, New York, 1006					
Ratner and A. S.Hoffman, Academic Press, New York, 1996.					

- Plasma-surface modification of biomaterials, P.K.Chua, J.Y.Chena, L.P.Wanga, N.Huang, Elsevier Science B.V, 2002.
- XXX Articles about Biomaterials and Biocompatibility.

BME 213- Digital System Design		
Teaching	Examination Scheme	Credits
Scheme		allocated
Theory 3	End of semester Examination-60 marks	Theory-3
hrs/week	Internal assessment:40 marks	
Course Prer	equisite: NA	
1. To a	cquaint the students with the fundamental principles of two-valued	ļ
logic and various devices used to implement logical operations on		
variables.		
2. To lay the foundation for further studies in areas such as VLSI, computer, microprocessor etc.		

CO1: Use the basic logic gates and various reduction techniques of digital logic circuit			
in detail.			
CO2: D	esign combinational and sequential circuits.		
CO3: D	esign and implement hardware circuit to test performance and appli	ication.	
CO4: U	nderstand the basic operation of memory devices.		
	Course Content		
Unit -I	Combinational Logic Design: Review of Boolean algebra and	10 hrs	
	DeMorgan's theorem, Standard representations of logic		
	functions, k map representation (upto 6 variables) of logic		
	functions (SOP and POS forms), minimization of logical		
	functions for min -terms and max - terms, don't care conditions,		
	Design Examples: Arithmetic Circuits, BCD - to – 7 segment		
	decoder, Code converters. Adders and subtractor, ALU, Digital		
	Comparator, Parity generators/checkers, Multiplexers and their		
	multiplevers and their use in combinational logic designs		
	Decoders demultiplexer trees		
Unit-II	Sequential Logic Design and VHDL basic: Flip flop basics.	12 hrs	
	Building blocks of SR, JK, MS J -K flip flop, D and T flip -		
	flops. Use of preset and clear terminals, Excitation Table for		
	flip flops, Conversion of flip flops. Application of Flip flops:		
	Registers, Shift registers, Synchronous and ripple Counters		
	(ring counters, twisted ring counters), Sequence Generators,		
	up/down counters, Clock Skew, Clock jitter, Effect on		
	synchronous designs; Design entry: Schematic, FSM & HDL,		
	different modeling styles in VHDL, Data types and objects,		
	Dataflow, Benavioral and Structural Modeling, Synthesis and Simulation VIID constructs and codes for combinational and		
	sequential circuits		
Unit-III	Logic Families Classification of logic families. Characteristics	8 hrs	
Omt-m	of digital ICs -Speed of operation power dissipation figure of	0 1113	
	merit, fan in, fan out, current and voltage parameters, noise		
	immunity, operating temperatures and power supply		
	requirements; TTL logic: Operation of TTL NAND gate, active		
	pull up, wired AND, open collector output, unconnected inputs;		
	Tri-State logic. CMOS logic - CMOS inverter, NAND, NOR		
	gates, unconnected inputs, wired logic, open drain output.		
	Interfacing CMOS and TTL; Comparison table of		
	Characteristics of TTL, CMOS, ECL, RTL, I2L, DCTL.		
Unit-IV	Programmable Logic Devices and Semiconductor Memories	10 hrs	
	Programmable logic devices: Detail architecture, Study of		
	PROM, PAL, PLA, Designing combinational circuits using		
	Semiconductor memories: memory organization and operation		
	expanding memory size. Classification and characteristics of		
	memories, RAM, ROM, EPROM. EEPROM. NVRAM.		

	SRAM, DRAM.	
	Assessment	
Part A	CIA-I: Unit I	20 Marks
	CIA-II: Unit II, III	20 Marks
Part B	End Semester Exam	60 Marks
ESSENTIAL READINGS		
1. Text McC	Books: 1. R.P. Jain, "Modern digital electronics", 3rd edition, 12th Graw Hill Publication, 2007.	nreprint Tata
2. M. Morris Mano, "Digital Logic and Computer Design" 4th edition, Prentice Hall of India, 2013.		
3. P. Albert Malvino and A. Jerrald Brown, "Digital Computer Electronics" Glencore Publishers.		
4 R I	Tocci N S Widmer and G L Moss "Digital Systems Principles	and

4. R. J. Tocci, N. S. Widmer and G. L. Moss, "Digital Systems, Principles and Applications", Pearson Publishers.

BME-214 Biomedical Instrumentations and devices laboratory				
Teaching Scheme	Examination Scheme	Credits allocated		
Practical 2 hrs/week	End of semester Examination: 60 marks	Practicals-2		
	Internal assessment: 40 marks			
Course Prerequisite:	NA			
Course Objective:	dee veleted to Dismedial instrumentations	and device accepted		
To provide knowled	age related to Biomedical instrumentations a	and device-associated		
techniques.				
Course Outcomes: O	n completion of this course, students will be ab	le to		
To operate Biomed	ical instruments like ECG, spirometers, EMG,	etc.		
	Course Content:			
1- Blood Pressure	Measurement			
2- Real time mon	itoring of Echocardiography			
3- Working on di	fferent types of Diathermy equipment study			
a-Shortwave Diathermy, b-Ultrasound Diathermy, c-Surgical Diathermy				
4- ECG wave analysis using the simulator				
5- Real time patient monitoring system				
6- Ultrasound blood flow measurement to identify arteries and veins				
7- Respiratory sys	7- Respiratory system analysis using Spirometer			
8- Analysis of EC	8- Analysis of ECG abnormal wave pattern using Arrhythmia Simulator.			
9- EEG wave ana	9- EEG wave analysis using the simulator.			
10- Auditory system check-up using Audiometer.				
11- Heart sound measurement using PCG.				
12- Biotelemetry.	12- Biotelemetry.			
13- Pacemaker Module.				
14- ECG heart rate	alarm system with HRV.			

15- EMG Biofeedback with NCV				
Assessment				
Part A	CIA-I	20 Marks		
	CIA-II	20 Marks		
Part B	End Semester Exam	60 Marks		

BME 215- Biomaterials Lab			
Teaching Scheme	Examination Scheme	Credits allocated	
Practical 2 hrs/week	End of semester Examination: 60 marks	Practicals-2	
	Internal assessment: 40 marks		
Course Prerequisite:	NA		
Course Objective:			
1. Develop skills to data.	b design and conduct experiments, as well as a	nalyze and interpret	
2. Surface analysis	of surface dependent engineering properties o	f the biomaterials.	
3. Understanding t	he methods for biocompatibility improvement	and practical aspects	
of biomedical de	evices: sterilization, manufacturing, clinical tria	als and ethical issues,	
the price of impl	lants and allocation of resources.		
Course Outcomes O	n completion of this course, students will be sh		
1 Students will	be able to explain the concents of stress	ne lo	
parameters us	sed to characterize the physical bulk and	surface properties of	
2 Students will	be able to describe the composition stru	cture and mechanical	
properties of	the main classes of biomaterials- metals.	ceramics, polymers,	
composites an structure and t	d the body tissues explain and give an example reatment modify the mechanical properties.	e of how composition,	
3. Students will	be able to describe the interactions of	biomaterials with the	
biological env compatability.	ironment - stability, corrosior	n, and hemo-	
4. Students will to fabricate de	be able to describe and give an example of how evices for clinical use.	v biomaterials are used	
	Course Content:		
• Determination	of tensile and compressive strengths of implan	t material.	
• Determination	of modulus of rigidity of different biomaterials	s.	
• To study the in material.	fluence of surface roughness on the wetability	of the implant	
• Determination measurement.	of surface energy of implant materials through	contact angle	
• Determination Measurement of	of glass transition temperature of polymer and of rheological properties of solvent/solution.	polymer composite.	

• Determination of roughness of different implant materials.

- Determination of coefficient of friction and wear resistance of different implant surfaces.
- Study the pitting corrosion behavior of stainless steel in simulated body fluid.
- Determination of corrosion rate of metallic implant in simulated body fluid. Synthesis of nano particles by chemical route.
- To conduct surface coating on metallic implants by electrochemical methods.
- To conduct surface modification on medical implants by physical and chemical methods. Estimation of haemocompatibility of biomaterials by hemolysis studies.

Assessment		
Part A CIA-I		20 Marks
	CIA-II	20 Marks
Part B	End Semester Exam	60 Marks

BME 216: Digital System Design Lab				
Teaching Scheme	Examination Scheme	Credits allocated		
Lab 3 hrs/week	End of semester Examination-60	02		
	marks			
	Internal assessment:40 marks			
		Total-02		
Course Prerequisite:	Students should have basic knowledge	on Basic Electronics and		
Electronics Devices a	and Circuits.			
Course Objective:				
1. To know the c	concepts of Combinational circuits.			
2. To understand	I the concepts of flipflops, registers and	counters etc.		
Course Outcomes: Of	a completion this course, students will	be able to		
CO1: Learn basi	cs of logics gates.			
CO2: Construct	basic combinational circuits and verify	their functionalities.		
CO3: Learn the	designing of various sequential circuits			
CO4: Construct	various digital circuits and their operat	ions.		
		1		
Course Content:				
1) Study of swite	ches using discrete components a)Diode	e as a Switch b)Transistor as a		
switch				
2) Verify four vo	oltage and current parameters for TTL a	and CMOS (IC 74LSXX,		
74HCXX), (R	efer Data-Sheet).			
3) Study of Univ	3) Study of Universal Gates (NAND Gate and NOR Gate) and Implementation of a			
function using	g universal gate			
4) Verification o	f Demorgan's Law using TTL IC			
5) Study of IC-7-	4LS153 as a Multiplexer. (Refer Data-S	Sheet).		
• Design a	nd Implement 8:1 MUX using IC-74LS	S153 & Verify its Truth Table.		
• Design &	z Implement the given 4 variable functi	on using IC74LS153. Verify		

its Truth-Table.

- 6) Study of IC-74LS138 as a Demultiplexer/ Decoder (Test benches and FSM excluded)
 - Design and Implement full adder and subtractor function using IC-74LS138.
 - Design & Implement 3-bit code converter using IC-74LS138.(Gray to Binary/Binary to Gray)
- 7) Study of IC-74LS83 as a BCD adder, (Refer Data-Sheet).
 - Design and Implement 1 digit BCD adder using IC-74LS83
 - Design and Implement 4-bit Binary subtractor using IC-74LS83.
- 8) Study of IC-74LS85 as a magnitude comparator,(Refer Data-Sheet)
 - Design and Implement 4-bit Comparator.
 - Design and Implement 8-bit Comparator
- 9) Study of encoders and 7 segment converter
- 10) Study of Counter ICs (74LS90/74LS93). (Refer Data-Sheet
 - Design and Implement MOD-N and divide by N counter using IC-74LS90 and draw Timing Diagram.
 - Design and Implement MOD-N and divide by N counter using IC-74LS93 and draw Timing Diagram.
- 11) Study of synchronous counter
 - Design & Implement 4-bit Up/down Counter and MOD-N Up/down Counter using IC-74HC191/IC74HC193. Draw Timing Diagram

12) Study of Shift Register (74HC194/74LS95)

- Design and Implement Pulse train generator using IC-74HC194/IC74LS95 (Use right shift/left shift).
- Design and Implement 4-bit Ring Counter/ Twisted ring counter using shift registers IC 74HC194/IC74LS95.

13) Study of Flipflop: RS Flip-Flop, D Flip-Flop, JK Flip-Flop, T Flip-Flop and Master-Slave Flip-Flop.

Internal assessment		
Part A	CIA-I: First 4 Experiments	
	CIA-II: First 6 Experiments	

SEMESTER-V

BME 301: Environmental Studies

Syllabus will be provided by respective department

Teaching Scheme Examination Scheme Credits allocated Theory 3 End of semester Examination-60 marks Theory-3 Thrs/week Internal assessment:40 marks Theory-3 Course Prerequisite: NA Course Objective:	BME 302 Biomedical Imaging		
Scheme allocated Theory 3 End of semester Examination-60 marks Theory-3 hrs/week Internal assessment:40 marks Theory-3 Course Prerequisite: NA Course Objective:	Teaching	Examination Scheme	Credits
Theory 3 hrs/week End of semester Examination-60 marks Theory-3 Internal assessment:40 marks Internal assessment:40 marks Course Prerequisite: NA Course Objective: 1. To understand the Physics of medical imaging modalities 2. 2. To understand advanced medical image techniques. 3. 3. To understand medical image acquisition and processing. Course Outcomes: On completion of this course, students will be able to 1. Learn about Basic medical image modalities. 2. 2. Learn about advance medical imaging techniques. 3. 3. Learn about advance medical image processing. 0 Course Content 10 hrs Radiology, Nature of X-rays, X- ray Machine, Visualization of X-rays, Dental X-ray Machines, Portable and Mobile X-ray Units, Physical Parameters for X-ray Detectors, Digital Radiography. 10 hrs Ultrasonic Imaging Systems: Diagnostic Ultrasound, Physics of Ultrasonic Imaging Systems, Digital Scan Converter, Biological Effects of Ultrasound. 10 hrs Unit-II Nuclear Medical Imaging Systems: Radioistopes in Medical Diagnosis, Physics of Radioactivity, Radiation Detectors, Radio-isotope Rectilinear Scanner, The Gamma Camera, Emission Computed Tomography (ECT), Single-photon Emission Computed Tomography (ECT), Single-photon Emission Toengraphy (PET Scanner). Magnetic Resonance Imaging System, Principles of NMR Imaging Systems, Image Reconstruction Techniques, Basic NMR Components, Biological Effects of	Scheme		allocated
hrs/week Internal assessment:40 marks Course Prerequisite: NA Course Objective: 1. To understand the Physics of medical imaging modalities 2. 2. To understand medical image acquisition and processing. Course Outcomes: On completion of this course, students will be able to 1. Learn about Basic medical image modalities. 2. 2. Learn about advance medical image modalities. 2. 3. Learn about medical image processing. Course Content Unit -I X-ray Machines and Digital Radiography: Basis of Diagnostic 10 hrs Radiology, Nature of X-rays, X- ray Machine, Visualization of X-rays, Dental X-ray Machines, Portable and Mobile X-ray Units, Physical Parameters for X-ray Detectors, Digital Radiography. 10 hrs Ultrasonic Imaging Systems: Diagnostic Ultrasound, Physics of Ultrasonic Waves, Medical Ultrasound, Basic Pulse-echo Apparatus, A-Scan, Echocardiograph (M-mode), B-Scanner, Real- time Ultrasonic Imaging Systems: Digital Scan Converter, Biological Effects of Ultrasound. 10 hrs Unit-II Nuclear Medical Imaging Systems: Radioisotopes in Medical In biagnosis, Physics of Radioactivity, Radiation Detectors, Radio-isotope Rectilinear Scanner, The Gamma Camera, Emission Computed Tomography (ECT), Single-photon Emission Computed Tomography (SPECT), Positron Emission Toechniques, Basic NMR Components, Biological Effects of NMR Imaging, Systems, Image Reconstruction Techniques, Basic NMR Components, Biolological Effects of NMR Imaging, Computerized Tomography:	Theory 3	End of semester Examination-60 marks	Theory-3
Internal assessment:40 marks Course Prerequisite: NA Course Objective: 1. To understand the Physics of medical imaging modalities 2. To understand advanced medical image techniques. 3. To understand medical image acquisition and processing. Course Outcomes: On completion of this course, students will be able to 1. Learn about Basic medical image modalities. 2. Learn about advance medical imaging techniques. 3. Learn about medical image processing. Course Content Unit -I X-ray Machines and Digital Radiography: Basis of Diagnostic Radiology, Nature of X-rays, X- ray Machine, Visualization of X-rays, Dental X-ray Machines, Portable and Mobile X-ray Units, Physical Parameters for X-ray Detectors, Digital Radiography. Ultrasonic Imaging Systems: Diagnostic Ultrasound, Physics of Ultrasonic Waves, Medical Ultrasound, Basic Pulse-echo Apparatus, A-Scan, Echocardiograph (M-mode), B-Scanner, Real- time Ultrasonic Imaging Systems, Digital Scan Converter, Biological Effects of Ultrasound. Unit-II Nuclear Medical Imaging Systems: Radioisotopes in Medical I0 hrs Diagnosis, Physics of Radioactivity, Radiation Detectors, Radio-isotope Rectilinear Scanner, The Gamma Camera, Emission Computed Tomography (ECT), Single-photon Emission Computed Tomography (SPECT), Positron Emission Techniques, Basic NMR Components, Biological Effects of NMR Imaging Systems, Image Reconstruction Techniques, Basic NMR Components, Biological Effects of NMR Imaging. Comput	hrs/week		
Course Prerequisite: NA Course Objective: 1. To understand the Physics of medical imaging modalities 2. To understand advanced medical image techniques. 3. To understand medical image acquisition and processing. Course Outcomes: On completion of this course, students will be able to 1. Learn about Basic medical image modalities. 2. Learn about advance medical imaging techniques. 3. Learn about medical image processing. Curse Content Unit -1 X-ray Machines and Digital Radiography: Basis of Diagnostic Radiology, Nature of X-rays, X- ray Machine, Visualization of X-rays, Dental X-ray Machines, Portable and Mobile X-ray Units, Physical Parameters for X-ray Detectors, Digital Radiography. Ultrasonic Imaging Systems: Diagnostic Ultrasound, Physics of Ultrasonic Waves, Medical Ultrasound, Basic Pulse-echo Apparatus, A-Scan, Echocardiograph (M-mode), B-Scanner, Real- time Ultrasonic Imaging Systems, Digital Scan Converter, Biological Effects of Ultrasound. Unit-II Nuclear Medical Imaging Systems: Radioisotopes in Medical 10 hrs Diagnosis, Physics of Radioactivity, Radiation Detectors, Radio-isotope Rectilinear Scanner, The Gamma Camera, Emission Computed Tomography (ECT), Single-photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET Scanner). Magnetic Resonance Imaging System, Principles of NMR Imaging. Computerized Tomography: Construction, function and Emisel Effects of NMR Imaging.		Internal assessment:40 marks	
Course Objective: 1. To understand the Physics of medical imaging modalities 2. To understand advanced medical image techniques. 3. To understand medical image acquisition and processing. Course Outcomes: On completion of this course, students will be able to 1. Learn about Basic medical image modalities. 2. Learn about advance medical image processing. Course Content Unit -I X-ray Machines and Digital Radiography: Basis of Diagnostic Radiology, Nature of X-rays, X- ray Machine, Visualization of X-rays, Dental X-ray Machines, Portable and Mobile X-ray Units, Physical Parameters for X-ray Detectors, Digital Radiography. Ultrasonic Imaging Systems: Diagnostic Ultrasound, Physics of Ultrasonic Waves, Medical Ultrasound, Basic Pulse-echo Apparatus, A-Scan, Echocardiograph (M-mode), B-Scanner, Real- time Ultrasonic Imaging Systems, Digital Scan Converter, Biological Effects of Ultrasound. Unit-II Nuclear Medical Imaging Systems: Radioisotopes in Medical 10 hrs Diagnosis, Physics of Radioactivity, Radiation Detectors, Radio-isotope Rectilinear Scanner, The Gamma Camera, Emission Computed Tomography (SPECT), Positron Emission Computed Tomography (SPECT), Positron Emission Tomography (PET Scanner). Magnetic Resonance Imaging System, Principles of NMR Imaging, Systems, Image Reconstruction Techniques, Basic NMR Components, Biological Effects of NMR Imaging. Computerized Tomography: Construction, function and	Course Prerequ	iisite: NA	
1. To understand the Physics of medical imaging modalities 2. To understand advanced medical image techniques. 3. To understand medical image acquisition and processing. Course Outcomes: On completion of this course, students will be able to 1. Learn about Basic medical image modalities. 2. Learn about advance medical imaging techniques. 3. Learn about medical image processing. Course Content Unit -I X-ray Machines and Digital Radiography: Basis of Diagnostic 10 hrs Radiology, Nature of X-ray, X- ray Machine, Visualization of X-rays, Dental X-ray Machines, Portable and Mobile X-ray Units, Physical Parameters for X-ray Detectors, Digital Radiography. Ultrasonic Imaging Systems: Diagnostic Ultrasound, Physics of Ultrasonic Imaging Systems: Diagnostic Ultrasound, Physics of Ultrasonic Waves, Medical Ultrasound, Basic Pulse-echo Apparatus, A-Scan, Echocardiograph (M-mode), B-Scanner, Real- time Ultrasonic Imaging Systems, Digital Scan Converter, Biological Effects of Ultrasound. Unit-II Nuclear Medical Imaging Systems: Radioisotopes in Medical Diagnosis, Physics of Radioactivity, Radiation Detectors, Radio-isotope Rectilinear Scanner, The Gamma Camera, Emission Computed Tomography (PET), Single-photon Emission Tomography (PET Scanner). Magnetic Resonance Imaging System, Principles of NMR Imaging Systems, Image Reconstruction Techniques, Basic NMR Components, Biological Effects of NMR Imaging. Computerized Tomography: Construction, function and	Course Object	tive:	
2. To understand advanced medical image techniques. 3. To understand medical image acquisition and processing. Course Outcomes: On completion of this course, students will be able to 1. Learn about Basic medical image modalities. 2. Learn about advance medical imaging techniques. 3. Learn about medical image processing. Course Content Unit -I X-ray Machines and Digital Radiography: Basis of Diagnostic 10 hrs Radiology, Nature of X-rays, X- ray Machine, Visualization of X-rays, Dental X-ray Machines, Portable and Mobile X-ray Units, Physical Parameters for X-ray Detectors, Digital Radiography. Ultrasonic Imaging Systems: Diagnostic Ultrasound, Physics of Ultrasonic Waves, Medical Ultrasound, Basic Pulse-echo Apparatus, A-Scan, Echocardiograph (M-mode), B-Scanner, Real- time Ultrasonic Imaging Systems, Digital Scan Converter, Biological Effects of Ultrasound. Unit-II Nuclear Medical Imaging Systems: Radioisotopes in Medical Diagnosis, Physics of Radioactivity, Radiation Detectors, Radio-isotope Rectilinear Scanner, The Gamma Camera, Emission Computed Tomography (ECT), Single-photon Emission Tomography (PET Scanner). Magnetic Resonance Imaging System, Principles of NMR Imaging Systems, Image Reconstruction Techniques, Basic NMR Components, Biological Effects of NMR Imaging. Computerized Tomography: Construction, function and	1. To und	erstand the Physics of medical imaging modalities	
3. To understand medical image acquisition and processing. Course Outcomes: On completion of this course, students will be able to 1. Learn about Basic medical image modalities. 2. Learn about advance medical imaging techniques. 3. Learn about medical image processing. Course Content Unit -I X-ray Machines and Digital Radiography: Basis of Diagnostic Radiology, Nature of X-rays, X- ray Machine, Visualization of X-rays, Dental X-ray Machines, Portable and Mobile X-ray Units, Physical Parameters for X-ray Detectors, Digital Radiography. Ultrasonic Imaging Systems: Diagnostic Ultrasound, Physics of Ultrasonic Waves, Medical Ultrasound, Basic Pulse-echo Apparatus, A-Scan, Echocardiograph (M-mode), B-Scanner, Real- time Ultrasonic Imaging Systems, Digital Scan Converter, Biological Effects of Ultrasound. Unit-II Nuclear Medical Imaging Systems: Radioisotopes in Medical Diagnosis, Physics of Radioactivity, Radiation Detectors, Radio-isotope Rectilinear Scanner, The Gamma Camera, Emission Computed Tomography (SPECT), Positron Emission Tomography (PET Scanner). Magnetic Resonance Imaging System, Principles of NMR Imaging Systems, Image Reconstruction Techniques, Basic NMR Components, Biological Effects of NMR Imaging. Computerized Tomography: Construction, function and	2. To unde	erstand advanced medical image techniques.	
Course Outcomes: On completion of this course, students will be able to 1. Learn about Basic medical image modalities. 2. Learn about advance medical imaging techniques. 3. Learn about medical image processing. Course Content Unit -I X-ray Machines and Digital Radiography: Basis of Diagnostic 10 hrs Radiology, Nature of X-rays, X- ray Machine, Visualization of X-rays, Dental X-ray Machines, Portable and Mobile X-ray Units, Physical Parameters for X-ray Detectors, Digital Radiography. 10 hrs Ultrasonic Imaging Systems: Diagnostic Ultrasound, Physics of Ultrasonic Imaging Systems: Diagnostic Ultrasound, Physics of Ultrasonic Waves, Medical Ultrasound, Basic Pulse-echo Apparatus, A-Scan, Echocardiograph (M-mode), B-Scanner, Real- time Ultrasonic Imaging Systems, Digital Scan Converter, Biological Effects of Ultrasound. 10 hrs Unit-II Nuclear Medical Imaging Systems: Radioisotopes in Medical 10 hrs 10 hrs Diagnosis, Physics of Radioactivity, Radiation Detectors, Radio-isotope Rectilinear Scanner, The Gamma Camera, Emission Computed Tomography (ECT), Single-photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET Scanner). Magnetic Resonance Imaging System, Principles of NMR Imaging Systems, Image Reconstruction Techniques, Basic NMR Components, Biological Effects of NMR Imaging. Computerized Tomography: Construction, function and	3. To unde	erstand medical image acquisition and processing.	
1. Learn about Basic medical image modalities. 2. Learn about advance medical imaging techniques. 3. Learn about medical image processing. Course Content Unit -I X-ray Machines and Digital Radiography: Basis of Diagnostic Radiology, Nature of X-rays, X- ray Machine, Visualization of X-rays, Dental X-ray Machines, Portable and Mobile X-ray Units, Physical Parameters for X-ray Detectors, Digital Radiography. Ultrasonic Imaging Systems: Diagnostic Ultrasound, Physics of Ultrasonic Waves, Medical Ultrasound, Basic Pulse-echo Apparatus, A-Scan, Echocardiograph (M-mode), B-Scanner, Real- time Ultrasonic Imaging Systems, Digital Scan Converter, Biological Effects of Ultrasound. Unit-II Nuclear Medical Imaging Systems: Radiostopes in Medical Diagnosis, Physics of Radioactivity, Radiation Detectors, Radio-isotope Rectilinear Scanner, The Gamma Camera, Emission Computed Tomography (ECT), Single-photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET Scanner). Magnetic Resonance Imaging System, Principles of NMR Imaging Systems, Image Reconstruction Techniques, Basic NMR Components, Biological Effects of NMR Imaging. Computerized Tomography: Construction, function and	Course Outco	mes: On completion of this course, students will be able to	
2. Learn about advance medical imaging techniques. 3. Learn about medical image processing. Course Content Unit -I X-ray Machines and Digital Radiography: Basis of Diagnostic Radiology, Nature of X-rays, X- ray Machine, Visualization of X-rays, Dental X-ray Machines, Portable and Mobile X-ray Units, Physical Parameters for X-ray Detectors, Digital Radiography. 10 hrs Ultrasonic Imaging Systems: Diagnostic Ultrasound, Physics of Ultrasonic Waves, Medical Ultrasound, Basic Pulse-echo Apparatus, A-Scan, Echocardiograph (M-mode), B-Scanner, Real- time Ultrasonic Imaging Systems, Digital Scan Converter, Biological Effects of Ultrasound. 10 hrs Unit-II Nuclear Medical Imaging Systems: Radioisotopes in Medical Diagnosis, Physics of Radioactivity, Radiation Detectors, Radio-isotope Rectilinear Scanner, The Gamma Camera, Emission Computed Tomography (ECT), Single-photon Emission Tomography (PET Scanner). Magnetic Resonance Imaging System, Principles of NMR Imaging Systems, Image Reconstruction Techniques, Basic NMR Components, Biological Effects of NMR Imaging. Computerized Tomography: Construction, function and	1. Learn a	bout Basic medical image modalities.	
3. Learn about medical image processing. Course Content Unit -I X-ray Machines and Digital Radiography: Basis of Diagnostic 10 hrs Radiology, Nature of X-rays, X- ray Machine, Visualization of X-rays, Dental X-ray Machines, Portable and Mobile X-ray Units, Physical Parameters for X-ray Detectors, Digital Radiography. 10 hrs Ultrasonic Imaging Systems: Diagnostic Ultrasound, Physics of Ultrasonic Waves, Medical Ultrasound, Basic Pulse-echo Apparatus, A-Scan, Echocardiograph (M-mode), B-Scanner, Real- time Ultrasonic Imaging Systems, Digital Scan Converter, Biological Effects of Ultrasound. 10 hrs Unit-II Nuclear Medical Imaging Systems: Radioisotopes in Medical Diagnosis, Physics of Radioactivity, Radiation Detectors, Radio-isotope Rectilinear Scanner, The Gamma Camera, Emission Computed Tomography (ECT), Single-photon Emission Tomography (PET Scanner). Magnetic Resonance Imaging System, Principles of NMR Imaging Systems, Image Reconstruction Techniques, Basic NMR Components, Biological Effects of NMR Imaging. Computerized Tomography: Construction, function and	2. Learn a	bout advance medical imaging techniques.	
Image Processes Course Content Unit -I X-ray Machines and Digital Radiography: Basis of Diagnostic Radiology, Nature of X-rays, X- ray Machine, Visualization of X-rays, Dental X-ray Machines, Portable and Mobile X-ray Units, Physical Parameters for X-ray Detectors, Digital Radiography. 10 hrs Ultrasonic Imaging Systems: Diagnostic Ultrasound, Physics of Ultrasonic Waves, Medical Ultrasound, Basic Pulse-echo Apparatus, A-Scan, Echocardiograph (M-mode), B-Scanner, Real- time Ultrasonic Imaging Systems; Digital Scan Converter, Biological Effects of Ultrasound. 10 hrs Unit-II Nuclear Medical Imaging Systems: Radioisotopes in Medical Diagnosis, Physics of Radioactivity, Radiation Detectors, Radio-isotope Rectilinear Scanner, The Gamma Camera, Emission Computed Tomography (ECT), Single-photon Emission Tomography (PET Scanner). Magnetic Resonance Imaging System, Principles of NMR Imaging Systems, Image Reconstruction Techniques, Basic NMR Components, Biological Effects of NMR Imaging. Computerized Tomography: Construction, function and	3. Learn a	bout medical image processing.	
Unit -IX-ray Machines and Digital Radiography: Basis of Diagnostic Radiology, Nature of X-rays, X- ray Machine, Visualization of X-rays, Dental X-ray Machines, Portable and Mobile X-ray Units, Physical Parameters for X-ray Detectors, Digital Radiography. Ultrasonic Imaging Systems: Diagnostic Ultrasound, Physics of Ultrasonic Waves, Medical Ultrasound, Basic Pulse-echo Apparatus, A-Scan, Echocardiograph (M-mode), B-Scanner, Real- time Ultrasonic Imaging Systems: Radioisotopes in Medical Diagnosis, Physics of Radioactivity, Radiation Detectors, Radio-isotope Rectilinear Scanner, The Gamma Camera, Emission Computed Tomography (SPECT), Positron Emission Tomography (PET Scanner). Magnetic Resonance Imaging System, Principles of NMR Imaging Systems, Image Reconstruction Techniques, Basic NMR Components, Biological Effects of NMR Imaging. Computerized Tomography: Construction, function and10 hrs		Course Content	
Radiology, Nature of X-rays, X- ray Machine, Visualization of X-rays, Dental X-ray Machines, Portable and Mobile X-ray Units, Physical Parameters for X-ray Detectors, Digital Radiography. Ultrasonic Imaging Systems: Diagnostic Ultrasound, Physics of Ultrasonic Waves, Medical Ultrasound, Basic Pulse-echo Apparatus, A-Scan, Echocardiograph (M-mode), B-Scanner, Real- time Ultrasonic Imaging Systems: Digital Scan Converter, Biological Effects of Ultrasound.Unit-IINuclear Medical Imaging Systems: Radioisotopes in Medical Diagnosis, Physics of Radioactivity, Radiation Detectors, Radio-isotope Rectilinear Scanner, The Gamma Camera, Emission Computed Tomography (ECT), Single-photon Emission Tomography (PET Scanner). Magnetic Resonance Imaging System, Principles of NMR Imaging Systems, Image Reconstruction Techniques, Basic NMR Components, Biological Effects of NMR Imaging. Computerized Tomography: Construction, function and	Unit -I	X-ray Machines and Digital Radiography: Basis of Diagnostic	10 hrs
of X-rays, Dental X-ray Machines, Portable and Mobile X-ray Units, Physical Parameters for X-ray Detectors, Digital Radiography. Ultrasonic Imaging Systems: Diagnostic Ultrasound, Physics of Ultrasonic Waves, Medical Ultrasound, Basic Pulse-echo Apparatus, A-Scan, Echocardiograph (M-mode), B-Scanner, Real- time Ultrasonic Imaging Systems, Digital Scan Converter, Biological Effects of Ultrasound.Unit-IINuclear Medical Imaging Systems: Radioisotopes in Medical Diagnosis, Physics of Radioactivity, Radiation Detectors, Radio-isotope Rectilinear Scanner, The Gamma Camera, 		Radiology, Nature of X-rays, X- ray Machine, Visualization	
Units, Physical Parameters for X-ray Detectors, Digital Radiography.Ultrasonic Imaging Systems: Diagnostic Ultrasound, Physics of Ultrasonic Waves, Medical Ultrasound, Basic Pulse-echo Apparatus, A-Scan, Echocardiograph (M-mode), B-Scanner, Real- time Ultrasonic Imaging Systems, Digital Scan Converter, Biological Effects of Ultrasound.Unit-IINuclear Medical Imaging Systems: Radioisotopes in Medical Diagnosis, Physics of Radioactivity, Radiation Detectors, Radio-isotope Rectilinear Scanner, The Gamma Camera, Emission Computed Tomography (ECT), Single-photon Emission Tomography (PET Scanner). Magnetic Resonance Imaging System, Principles of NMR Imaging Systems, Image Reconstruction Techniques, Basic NMR Components, Biological Effects of NMR Imaging. Computerized Tomography: Construction, function and		of X-rays, Dental X-ray Machines, Portable and Mobile X-ray	
Radiography.Ultrasonic Imaging Systems: Diagnostic Ultrasound, Physics of Ultrasonic Waves, Medical Ultrasound, Basic Pulse-echo Apparatus, A-Scan, Echocardiograph (M-mode), B-Scanner, Real- time Ultrasonic Imaging Systems, Digital Scan Converter, Biological Effects of Ultrasound.Unit-IINuclear Medical Imaging Systems: Radioisotopes in Medical Diagnosis, Physics of Radioactivity, Radiation Detectors, Radio-isotope Rectilinear Scanner, The Gamma Camera, Emission Computed Tomography (ECT), Single-photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET Scanner). Magnetic Resonance Imaging System, Principles of NMR Imaging Systems, Image Reconstruction Techniques, Basic NMR Components, Biological Effects of NMR Imaging. Computerized Tomography: Construction, function and		Units, Physical Parameters for X-ray Detectors, Digital	
Ultrasonic Imaging Systems: Diagnostic Ultrasound, Physics of Ultrasonic Waves, Medical Ultrasound, Basic Pulse-echo Apparatus, A-Scan, Echocardiograph (M-mode), B-Scanner, Real- time Ultrasonic Imaging Systems, Digital Scan Converter, Biological Effects of Ultrasound.Unit-IINuclear Medical Imaging Systems: Radioisotopes in Medical Diagnosis, Physics of Radioactivity, Radiation Detectors, Radio-isotope Rectilinear Scanner, The Gamma Camera, Emission Computed Tomography (ECT), Single-photon Emission Tomography (PET Scanner). Magnetic Resonance Imaging System, Principles of NMR Imaging Systems, Image Reconstruction Techniques, Basic NMR Components, Biological Effects of NMR Imaging. Computerized Tomography: Construction, function and		Radiography.	
of Ultrasonic Waves, Medical Ultrasound, Basic Pulse-echo Apparatus, A-Scan, Echocardiograph (M-mode), B-Scanner, Real- time Ultrasonic Imaging Systems, Digital Scan Converter, Biological Effects of Ultrasound.Unit-IINuclear Medical Imaging Systems: Radioisotopes in Medical Diagnosis, Physics of Radioactivity, Radiation Detectors, Radio-isotope Rectilinear Scanner, The Gamma Camera, Emission Computed Tomography (ECT), Single-photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET Scanner). Magnetic Resonance Imaging System, Principles of NMR Imaging Systems, Image Reconstruction Techniques, Basic NMR Components, Biological Effects of NMR Imaging. Computerized Tomography: Construction, function and		Ultrasonic Imaging Systems: Diagnostic Ultrasound, Physics	
Apparatus, A-Scan, Echocardiograph (M-mode), B-Scanner, Real- time Ultrasonic Imaging Systems, Digital Scan Converter, Biological Effects of Ultrasound.Unit-IINuclear Medical Imaging Systems: Radioisotopes in Medical Diagnosis, Physics of Radioactivity, Radiation Detectors, Radio-isotope Rectilinear Scanner, The Gamma Camera, Emission Computed Tomography (ECT), Single-photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET Scanner). Magnetic Resonance Imaging System, Principles of NMR Imaging Systems, Image Reconstruction Techniques, Basic NMR Components, Biological Effects of NMR Imaging. Computerized Tomography: Construction, function and		of Ultrasonic Waves, Medical Ultrasound, Basic Pulse-echo	
Real- time Ultrasonic Imaging Systems, Digital Scan Converter, Biological Effects of Ultrasound.Unit-IINuclear Medical Imaging Systems: Radioisotopes in Medical Diagnosis, Physics of Radioactivity, Radiation Detectors, Radio-isotope Rectilinear Scanner, The Gamma Camera, Emission Computed Tomography (ECT), Single-photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET Scanner). Magnetic Resonance Imaging System, Principles of NMR Imaging Systems, Image Reconstruction Techniques, Basic NMR Components, Biological Effects of NMR Imaging. Computerized Tomography: Construction, function and		Apparatus, A-Scan, Echocardiograph (M-mode), B-Scanner,	
Converter, Biological Effects of Ultrasound.Unit-IINuclear Medical Imaging Systems: Radioisotopes in Medical Diagnosis, Physics of Radioactivity, Radiation Detectors, Radio-isotope Rectilinear Scanner, The Gamma Camera, Emission Computed Tomography (ECT), Single-photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET Scanner). Magnetic Resonance Imaging System, Principles of NMR Imaging Systems, Image Reconstruction Techniques, Basic NMR Components, Biological Effects of NMR Imaging. Computerized Tomography: Construction, function and		Real- time Ultrasonic Imaging Systems, Digital Scan	
Unit-IINuclear Medical Imaging Systems: Radioisotopes in Medical Diagnosis, Physics of Radioactivity, Radiation Detectors, Radio-isotope Rectilinear Scanner, The Gamma Camera, Emission Computed Tomography (ECT), Single-photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET Scanner). Magnetic Resonance Imaging System, Principles of NMR Imaging Systems, Image Reconstruction Techniques, Basic NMR Components, Biological Effects of NMR Imaging. Computerized Tomography: Construction, function and10 hrs		Converter, Biological Effects of Ultrasound.	
Diagnosis, Physics of Radioactivity, Radiation Detectors, Radio-isotope Rectilinear Scanner, The Gamma Camera, Emission Computed Tomography (ECT), Single-photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET Scanner). Magnetic Resonance Imaging System, Principles of NMR Imaging Systems, Image Reconstruction Techniques, Basic NMR Components, Biological Effects of NMR Imaging. Computerized Tomography: Construction, function and	Unit-II	Nuclear Medical Imaging Systems: Radioisotopes in Medical	10 hrs
Radio-isotope Rectilinear Scanner, The Gamma Camera, Emission Computed Tomography (ECT), Single-photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET Scanner). Magnetic Resonance Imaging System, Principles of NMR Imaging Systems, Image Reconstruction Techniques, Basic NMR Components, Biological Effects of NMR Imaging. Computerized Tomography: Construction, function and		Diagnosis, Physics of Radioactivity, Radiation Detectors,	
Emission Computed Tomography (ECT), Single-photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET Scanner). Magnetic Resonance Imaging System, Principles of NMR Imaging Systems, Image Reconstruction Techniques, Basic NMR Components, Biological Effects of NMR Imaging. Computerized Tomography: Construction, function and		Radio-isotope Rectilinear Scanner, The Gamma Camera,	
Emission Computed Tomography (SPECT), Positron Emission Tomography (PET Scanner). Magnetic Resonance Imaging System, Principles of NMR Imaging Systems, Image Reconstruction Techniques, Basic NMR Components, Biological Effects of NMR Imaging. Computerized Tomography: Construction, function and		Emission Computed Tomography (ECT), Single-photon	
Imaging System, Principles of NMR Imaging Systems, Image Reconstruction Techniques, Basic NMR Components, Biological Effects of NMR Imaging. Computerized Tomography: Construction, function and		Emission Computed Tomography (SPECT), Positron	
Reconstruction Techniques, Basic NMR Components, Biological Effects of NMR Imaging. Computerized Tomography: Construction, function and		Imaging System Dringiples of NMD Imaging Systems Image	
Biological Effects of NMR Imaging. Computerized Tomography: Construction, function and		Reconstruction Techniques, Basic NMP Components	
Computerized Tomography: Construction, function and		Reconstruction rechniques, basic twirk components, Biological Effects of NMR Imaging	
computenzea romography. Construction, function and		Computerized Tomography: Construction function and	
operation of a CT scanner. Clinical applications		operation of a CT scanner. Clinical applications	

Unit-II	I Medical Image Processing: Filtering of images, Image	10 hrs	
	enhancement, Histogram Equalization & Contrast		
	Adjustment, Spatial Transformation, Edge Detection		
	Techniques, Region Based Processing, Color Based Image		
	Processing, Image Segmentation.		
	Assessment		
Part A	CIA-I: Unit I	20 Marks	
	CIA-II: Unit II, III	20 Marks	
Part B	End Semester Exam	60 Marks	
ESSENT	IAL READINGS		
1. R.	S. Khandpur, Biomedical Instrumentation 3rd Edition (Ind	lia	
Pr	ofessional Science & Technology Electrical Engineering), McGraw H	ill	
Ed	lucation: Third edition (4 August 2014).		
2 Di	gital Image Processing by Rafael C Gonzalez and Richard F		
2. Controlog D C Woods D E "Digital Image Drocossing" Third Edition			
5. Gonzalez K C, woods K E, Digital image Processing, Imira Edition,			
Prentice Hall, 2007.			
4. Atam Dhawan, "Medical Image Analysis", John Wiley, 2003			
5. Mark A Brown, Richard C Semelka, "MRI: Basic Principles and Applications",			
Jo	John Wiley, Third Edition, 2003		
6. Jo	6. Joie P Jones, Manbir Singh and Cho Z.H., "Foundations of Medical Imaging", John		
	Wiley, 1993.		
7. W	7. William R Hendee, E. Russell Ritenour, "Medical Imaging Physics", 4th ed., John		
	Wiley & Sons, Inc., New York, 2002.		
8. Pa	8. Paul Suetens, "Fundamentals of Medical Imaging", 2nd ed., Cambridge University		
pro pro	press, 2009 .		
9. J.	Witchaet Fitzpatrick and Willan Sonka, "Handbook of Medical Imaging,	, voi. 2,	
51	TE Press, 2000		

BME 303: Analog Electronics			
Teaching Scheme	Examination Scheme	Credits	
		allocated	
Theory 3	End of semester Examination-60 marks	Theory-3	
hrs/week			
Course Prerequis	site: Knowledge of 10+2 Math, Linear Algebra, signal and s	systems, and	
Fourier Transform	s.		
Course Objective	:		
Course Outcomes	s: On completion this course, students will be able to		
CO1: Analyse an	nd design different BJT Circuits i.e amplifiers and oscillator of	circuits.	
CO2: Explain co	CO2: Explain concepts and applications of power amplifiers and Tuned amplifiers.		
CO3: Compare a	CO3: Compare and apply different concepts of feedback methods in practical circuits.		
CO4: Classify different OP-Amp configurations based on their design and working.			
CO5: Design of different Op- Amp circuits for practical electronic project design.			
Level	Bachelor		

Course Content:		
Unit -I	OP-AMP Basics Introduction to op-amps, ideal	08 hrs
	Characteristics, Pin configuration of 741 op-amp, Block	
	diagram of OP-AMP, Bias, offsets and drift, bandwidth	
	and slew rate; Offset and Frequency compensation,	
	Exercise problems; Need and types of level shifter, current	
	mirror circuits; Voltage series and voltage shunt feedback	
	amplifier and its effect on Ri, Ro, bandwidth and voltage	
	gain	
Unit-II	Linear and Non-linear applications of OPAMP Inverting	12 hrs
	and non-inverting amplifiers and their analysis,	
	Applications: inverting and non- inverting summers,	
	Differential Amplifier configurations, Ideal integrator,	
	practical integrator with frequency response, Ideal	
	differentiator, practical differentiator with frequency	
	applications of comparator Schmitt trigger	
	(symmetrical/asymmetrical) clippers and clampers voltage	
	limiters. Square wave generator, triangular wave generator.	
	Need of precision rectifier, Half wave, Full wave precision	
	rectifiers, peak detectors, sample and hold circuits.	
Unit-III	Unit III: Converter and Filters V-F, I-V and V-I	14 hrs
	converter, DAC: types of DAC, characteristics,	
	specifications, advantages and disadvantages of each type	
	of DAC, ADC: types of ADC, characteristics,	
	of ADC: Design and frequency scaling of First order and	
	second order Active Filters. Low pass. High pass. Band	
	pass and Band Reject filters, Butterworth, Chebychev	
	filters.	
Unit-IV	Unit IV: Analog Circuits Analog IC Multipliers and	8 hrs
	applications Comparators, regenerative comparators, input -	
	output Characteristics, Astable and Monostable	
	multivibrator, Triangular wave- generators; 555 Timer	
	functional diagram, monostable and astable operation,	
	Three terminal IC voltage regulator exercise problems IC	
	723 general nurnose regulator Switching Regulator	
	, 25 general purpose regulator, 5 (noning regulator)	
	Phase Locked Loop and Oscillators Block diagram of	
	PLL and its function, PLL types, characteristics/parameters	
	of PLL, and different applications of PLL. Oscillators	
	principle, types and frequency stability, design of phase	
	sniit, wein bridge, Quadrature, voltage-controlled	
	USUIIIalUIS.	

Internal assessment		
Part A	CIA-I: Unit I, and II	20 Marks
	CIA-II: Unit III, and IV	20 Marks
Part B	EoSE: Term Exam	60 Marks

Text/Reference Books:

- 1. J. Millman & A. Grabel, Microelectronics, TataMcGraw-Hill, 2001.
- 2. Millman and Halkias, Integrated Electronics, Tata McGraw-Hill, 2001.
- 3. R. A. Gayakwad, Op amp and Linear Integrated Circuits, Prentice-Hall (India), 1983.
- 4. B. S. Sonde, Power Supplies and Regulators, Tata Mc-Graw Hill, 1980.
- 5. Schilling and Belove, Electronics Circuits, Tata Mc-Graw Hill, 2002.
- 6. Robert Boylestad, Electronics Devices and Circuits, 9 th ed., Dorling Kindersley (India) Pvt Ltd, 2009.
- 7. David Bell, Electronics: Devices and Circuits, 4 th ed., Prentice-Hall (India), 1999. IC Voltage Regulators: National Semiconductor Data Book.

E	BME304: Invasive And Non-Invasive Medical Diagnostic Techniques		
Teaching	Examination Scheme	Credits	
Scheme		allocated	
Theory 3	End of semester Examination: 60 marks	Theory-3	
hrs/week	Internal assessment: 40 marks		
Course Prerequ	nisite: NA		
Course Object	tive:		
1. To have	e an overview of Invasive and Non-Invasive diagnostic technique	S	
2. To stud	y the principles and application of Invasive Medical Diagnostic		
techniq	ues.		
3. To stud	y about principles and application of Invasive Medical Diagnostic	с	
technia	ues.		
Course Outco	mes: On completion of this course, students will be able to		
1 Learn a	bout Invasive and Non-Invasive diagnostic techniques		
2 Learn a	hout principles and application of Invasive Medical Diagnostic te	chniques	
2. Learn a	hout principles and application of Invasive Medical Diagnostic to	chiques.	
5. Leanna	Course Content	chinques.	
Unit I	Louise Content	10 hrs	
Unit -1	Tachniques: Definition of Invasive and Non invasive	10 1118	
	technique and measurements Minimally Invasive medical		
	measurement Invasive Medical Diagnostic Techniques.		
	working principle and application of Transesophageal		
	Echocardiogram Cardiac Catheterization Balloon		
	Angioplasty, atherectomy, Coronary Stept, Peripheral		
	Angiogram, Endogenous Ablation, Ambulatory Phlebectomy		
	and Sclerotherapy.		

1	it-II	Non-invasive Techniques: working principle and application	10 hrs
		of Electrocardiography, Radiography – routine and	
		specialized aleas like C1 and WRI, Stless testing – flead limit test stress related and other nuclear techniques. Holter	
		monitoring for arrhythmias and ischemic disorders	
		Echocardiography – M-mode, two dimensional Doppler	
		Color flow imaging, transesophageal echocardiography and	
		echo directed hemodynamic studies.	
Unit	t-III	Techniques related to Gynaecology, ophthalmology, ENT,	10 hrs
		orthopaedics etc, Rapid diagnostic tests and kits, Laboratory	
		Measurements: Apparatus and Principles, Photometry,	
		Laboratory Mathematics, Quality Assurance in the Clinical	
		Laboratory, Automation in the Clinical Laboratory. ECG,	
		EEG, EMG signal acquisition and interpretation, X-RAY, CT-	
		Scan, MRI, USG imaging and image analysis and	
		interpretation.	
		Assessment	20.34
Par	rt A	CIA-I: Unit I	20 Marks
D	(D	CIA-II: Unit II, III	20 Marks
Par		End Semester Exam	60 Marks
FOUR D		K H A LILINI-N	
1 T		andrum Diamadical Instrumentation 2rd Edition (India Drafassi	onal
1. F	R. S. Kh	andpur, Biomedical Instrumentation 3rd Edition (India Professi	onal
1. F	R. S. Kh Science	andpur, Biomedical Instrumentation 3rd Edition (India Professi &Technology Electrical Engineering), McGraw Hill Education (4 August 2014)	onal tion;
1. F S 7	R. S. Kh Science Third edi	andpur, Biomedical Instrumentation 3rd Edition (India Professi &Technology Electrical Engineering), McGraw Hill Education (4 August 2014).	onal tion;
1. F S 7 2. <u>F</u>	R. S. Kh Science Third edi Robert	andpur, Biomedical Instrumentation 3rd Edition (India Professi &Technology Electrical Engineering), McGraw Hill Educa ition (4 August 2014). <u>B. Northrop</u> , Non-Invasive Instrumentation and Measuremen	ional tion; tt in
1. F S 2. <u>F</u> N	R. S. Kh Science Third edi Robert 1 Medical	andpur, Biomedical Instrumentation 3rd Edition (India Professi &Technology Electrical Engineering), McGraw Hill Educa ition (4 August 2014). <u>B. Northrop</u> , Non-Invasive Instrumentation and Measuremen Diagnosis, <u>CRC Press</u> , 2017.	ional tion; it in
1. F S 2. <u>F</u> 3. A	R. S. Kh Science Third edi Robert 1 Medical Alberto	 andpur, Biomedical Instrumentation 3rd Edition (India Professi & Technology Electrical Engineering), McGraw Hill Education (4 August 2014). <u>B. Northrop</u>, Non-Invasive Instrumentation and Measuremen Diagnosis, <u>CRC Press</u>, 2017. Benchimol, Non-Invasive Diagnostic Techniques in Cardiol 	ional tion; tt in ogy,
1. F S 2. <u>F</u> 3. A	R. S. Kh Science Fhird edi <u>Robert 1</u> Medical Alberto Williams	 andpur, Biomedical Instrumentation 3rd Edition (India Professi & Technology Electrical Engineering), McGraw Hill Education (4 August 2014). <u>B. Northrop</u>, Non-Invasive Instrumentation and Measuremen Diagnosis, <u>CRC Press</u>, 2017. Benchimol, Non-Invasive Diagnostic Techniques in Cardiol & Wilkins; Reprint edition (1 June 1977). 	ional tion; it in ogy,
1. F S 2. <u>F</u> 3. A 4. I	R. S. Kh Science Third edi Robert 1 Medical Alberto Williams Leslie	 andpur, Biomedical Instrumentation 3rd Edition (India Professi & Technology Electrical Engineering), McGraw Hill Education (4 August 2014). <u>B. Northrop</u>, Non-Invasive Instrumentation and Measuremen Diagnosis, <u>CRC Press</u>, 2017. Benchimol, Non-Invasive Diagnostic Techniques in Cardiol & Wilkins; Reprint edition (1 June 1977). Cromwell, Fred J. Weibell, Erich A. Pfeiffer, Biomed 	ional tion; nt in ogy, dical
1. F S 2. <u>F</u> 3. A 4. I	R. S. Kh Science Third edi <u>Robert 1</u> Medical Alberto Williams Leslie	 andpur, Biomedical Instrumentation 3rd Edition (India Professi & Technology Electrical Engineering), McGraw Hill Education (4 August 2014). <u>B. Northrop</u>, Non-Invasive Instrumentation and Measuremen Diagnosis, <u>CRC Press</u>, 2017. Benchimol, Non-Invasive Diagnostic Techniques in Cardiol & Wilkins; Reprint edition (1 June 1977). Cromwell, Fred J. Weibell, Erich A. Pfeiffer, Biomed ntation and Measurements, Prentice- Hall Inc. 	ional tion; nt in ogy, dical
1. F S 2. <u>F</u> 3. A 4. I 5. F	R. S. Kh Science Fhird edi Robert 1 Medical Alberto Williams Leslie (Instrume	 andpur, Biomedical Instrumentation 3rd Edition (India Professi &Technology Electrical Engineering), McGraw Hill Education (4 August 2014). <u>B. Northrop</u>, Non-Invasive Instrumentation and Measuremen Diagnosis, <u>CRC Press</u>, 2017. Benchimol, Non-Invasive Diagnostic Techniques in Cardiol & Wilkins; Reprint edition (1 June 1977). Cromwell, Fred J. Weibell, Erich A. Pfeiffer, Biomed ntation and Measurements, Prentice- Hall Inc. Corcoles, Mortyn G Boutelle, Biosensors and Invasive Monitor 	ional tion; nt in ogy, dical pring
1. F S 7 2. <u>F</u> 8 3. A 7 4. I 1 5. F	R. S. Kh Science Third edi <u>Robert 1</u> Medical Alberto Williams Leslie (Instrume Emma P n Clinic	 andpur, Biomedical Instrumentation 3rd Edition (India Professi &Technology Electrical Engineering), McGraw Hill Education (4 August 2014). <u>B. Northrop</u>, Non-Invasive Instrumentation and Measuremen Diagnosis, <u>CRC Press</u>, 2017. Benchimol, Non-Invasive Diagnostic Techniques in Cardiol & Wilkins; Reprint edition (1 June 1977). Cromwell, Fred J. Weibell, Erich A. Pfeiffer, Biomed ntation and Measurements, Prentice- Hall Inc. Corcoles, Mortyn G Boutelle, Biosensors and Invasive Monitor al Applications, Springer International Publishing AG. 	ional tion; ut in ogy, dical oring
1. F S 7 2. <u>F</u> N 3. A V 4. I 5. F in 6. J	R. S. Kh Science Fhird edi <u>Robert 1</u> Medical Alberto Williams Leslie 0 Instrume Emma P n Clinic John G.	 andpur, Biomedical Instrumentation 3rd Edition (India Professi &Technology Electrical Engineering), McGraw Hill Education (4 August 2014). <u>B. Northrop</u>, Non-Invasive Instrumentation and Measuremen Diagnosis, <u>CRC Press</u>, 2017. Benchimol, Non-Invasive Diagnostic Techniques in Cardiol & Wilkins; Reprint edition (1 June 1977). Cromwell, Fred J. Weibell, Erich A. Pfeiffer, Biomed ntation and Measurements, Prentice- Hall Inc. Corcoles, Mortyn G Boutelle, Biosensors and Invasive Monitor al Applications, Springer International Publishing AG. Webster, Medical Instrumentation Application and Design, J. 	ional tion; nt in ogy, dical oring John
1. F S 7 2. <u>F</u> M 3. A V 4. L 5. F 5. F 6. J	R. S. Kh Science Third edi <u>Robert 1</u> Medical Alberto Williams Leslie 0 Instrume Emma P n Clinic Iohn G. Wiley &	 Andpur, Biomedical Instrumentation 3rd Edition (India Professi &Technology Electrical Engineering), McGraw Hill Education (4 August 2014). <u>B. Northrop</u>, Non-Invasive Instrumentation and Measuremen Diagnosis, <u>CRC Press</u>, 2017. Benchimol, Non-Invasive Diagnostic Techniques in Cardiol & Wilkins; Reprint edition (1 June 1977). Cromwell, Fred J. Weibell, Erich A. Pfeiffer, Biomed ntation and Measurements, Prentice- Hall Inc. Corcoles, Mortyn G Boutelle, Biosensors and Invasive Monito al Applications, Springer International Publishing AG. Webster, Medical Instrumentation Application and Design, Sons Inc. 	ional tion; ut in ogy, dical oring John
1. F S 7 2. <u>F</u> 8 3. A 7 4. L 5. F 11 5. F 11 6. J 7. J	R. S. Kh Science Third edi <u>Robert 1</u> Medical Alberto Williams Leslie 0 Instrume Emma P n Clinic Iohn G. Wiley & I. Wesh	 Anandpur, Biomedical Instrumentation 3rd Edition (India Professi &Technology Electrical Engineering), McGraw Hill Education (4 August 2014). <u>B. Northrop</u>, Non-Invasive Instrumentation and Measuremen Diagnosis, <u>CRC Press</u>, 2017. Benchimol, Non-Invasive Diagnostic Techniques in Cardiol & Wilkins; Reprint edition (1 June 1977). Cromwell, Fred J. Weibell, Erich A. Pfeiffer, Biomediation and Measurements, Prentice- Hall Inc. Corcoles, Mortyn G Boutelle, Biosensors and Invasive Monitor al Applications, Springer International Publishing AG. Webster, Medical Instrumentation Application and Design, Sons Inc. ey Todd, Invasive Diagnostic Techniques: Volume 2 (Techniques) 	ional tion; nt in ogy, dical oring John odd's
1. F 1. F S 7 2. <u>F</u> M 3. A V 4. I 5. F in 6. J V 7. <u>J</u>	R. S. Kh Science Third edi <u>Robert 1</u> Medical Alberto Williams Leslie 0 Instrume Emma P n Clinic John G. Wiley & L. Wesh Cardiova	 andpur, Biomedical Instrumentation 3rd Edition (India Professi &Technology Electrical Engineering), McGraw Hill Education (4 August 2014). <u>B. Northrop</u>, Non-Invasive Instrumentation and Measuremen Diagnosis, <u>CRC Press</u>, 2017. Benchimol, Non-Invasive Diagnostic Techniques in Cardiol & Wilkins; Reprint edition (1 June 1977). Cromwell, Fred J. Weibell, Erich A. Pfeiffer, Biomed ntation and Measurements, Prentice- Hall Inc. Corcoles, Mortyn G Boutelle, Biosensors and Invasive Monito al Applications, Springer International Publishing AG. Webster, Medical Instrumentation Application and Design, Sons Inc. <u>ey Todd</u>, Invasive Diagnostic Techniques: Volume 2 (Techniques), Createspace Independent Pub: 5th edition (26) 	ional tion; nt in ogy, dical oring John odd's June
1. F 1. F S 7 2. <u>F</u> N 3. A V 4. L 1 5. F in 6. J V 7. <u>J</u> (2)	R. S. Kh Science Fhird edi Alberto Williams Leslie Emma P n Clinic Iohn G. Wiley & Lesle Cardiova 2013)	 andpur, Biomedical Instrumentation 3rd Edition (India Professi &Technology Electrical Engineering), McGraw Hill Education (4 August 2014). <u>B. Northrop</u>, Non-Invasive Instrumentation and Measuremen Diagnosis, <u>CRC Press</u>, 2017. Benchimol, Non-Invasive Diagnostic Techniques in Cardiol & Wilkins; Reprint edition (1 June 1977). Cromwell, Fred J. Weibell, Erich A. Pfeiffer, Biomedination and Measurements, Prentice- Hall Inc. Corcoles, Mortyn G Boutelle, Biosensors and Invasive Monitor al Applications, Springer International Publishing AG. Webster, Medical Instrumentation Application and Design, Sons Inc. <u>ey Todd</u>, Invasive Diagnostic Techniques: Volume 2 (Texperimentation Review), Createspace Independent Pub; 5th edition (26 June 2) 	ional tion; nt in ogy, dical oring John odd's June

	BME- 305 Immunotechnology laboratory	
Teaching Scheme	Examination Scheme	Credits
Scheme		anocateu

Practical 2	End of semester Examination: 60 marks	Practicals-		
hrs/week	Internal assessment: 40 marks	2		
Course Prer	equisite: NA			
Course Obje	ctive:			
To provide ha	inds-on training on immuno assay and related techniques.			
Course Outc	omes: On completion of this course, students will be able to			
1. To perform	different immuno assays that are used in clinical diagnostics and r	esearch.		
2. To design	mmuno assay as per the requirement.			
	Course Content			
• Isolati	on of serum from blood and heat inactivation			
• Purifi	cation of antibody from serum, agglutination assay			
• In vitr	o assay of macrophage activation by bacterial polysaccharide 4-			
Immu	Immunocytochemistry, Immunohistochemistry			
• 5-ELI	SA, Western blot, 6-Flow cytometry,			
• Immu	nodiffusion,			
Immunoelectrophoresis				
Assessment				
Part A	CIA-I	20 Marks		
	CIA-II	20 Marks		
Part B	End Semester Exam	60 Marks		

BME 306: Analog Electronics Lab				
Teaching Scheme	Examination Scheme	Credits allocated		
Lab 2 hrs/week	End of semester Examination-60 marks	Lab-1		
Course Prerequisi	te: 10+2 Math, Linear Algebra, Fourier an	d Laplace Transforms.		
Course Objective:	To enhance the details knowledge on con	mmunication systems, various		
experiments have b	een incorporated. The main objective of th	is lab course is to enhance the		
details knowledge o	n different Amplifiers (Power, Operational,	Tuned, etc.).		
Course Outcomes	: On completion this course, students will	be able to		
CO1: Underst	and and analyze the op-amp and their com	parative study		
CO2: Develop	Develop the experimental skills to compare the strengths andweaknesses of			
various	various analog electronics systems			
CO3: Have kn	CO3: Have knowledge on circuit implementation on Multisim software.			
Level	Bachelor			
List of Experiments				

- 1. To study the operation of single-stage and multi-stage RC-Coupled Amplifiers.
- 2. To calculate Av, AI, Zin and Zout of CE RC-Coupled amplifiers with potential divider biasing.
- 3. To plot the frequency response of an RC-Coupled amplifier.
- 4. To study the effect of load resistance and source resistance on operation of an Amplifier.
- 5. To calculate the current gain and input impedance of Darlington pair & β of a transistor.
- 6. To calculate the voltage gain of the Darlington pair using voltage divider biasing.
- 7. Observing the functioning of voltage follower i.e. buffer.
- 8. Observing Op amp as inverting summer, average, differentiator, and integrator.
- 9. To study the operation of class A, B and C amplifiers.
- 10. To study the operation of a Differential Amplifier.

Internal assessment				
Part A	CIA-I	20 Marks		
	CIA-II	20 Marks		
Part B	EoSE: Term Exam	60 Marks		

Text/Reference Books:

- 1. J. Millman & A. Grabel, Microelectronics, TataMcGraw-Hill, 2001.
- 2. Millman and Halkias, Integrated Electronics, Tata McGraw-Hill, 2001.
- 3. R. A. Gayakwad, Op amp and Linear Integrated Circuits, Prentice-Hall (India), 1983.
- 4. B. S. Sonde, Power Supplies and Regulators, Tata Mc-Graw Hill, 1980.
- 5. Schilling and Belove, Electronics Circuits, Tata Mc-Graw Hill, 2002.
- 6. Robert Boylestad, Electronics Devices and Circuits, 9 th ed., Dorling Kindersley (India) Pvt Ltd, 2009.

BME 307 - Biomedical Imaging Laboratory			
Teaching	Examination Scheme	Credits	
Scheme		allocated	
Practical 2	End of semester Examination: 60 marks	Practicals-	
hrs/week	Internal assessment: 40 marks	2	
Course Prer	equisite: NA		
Course Obje	ctive:		
• To expertise	the students through handling different medical imaging instrume	nts and	
analyze it mo	re precisely.		
Course Outcomes: On completion of this course, students will be able to			
• After completing the course the student will able to operate the image equipment			
individually.			
• Student can able to differentiate a diseased and normal images more accurately.			
• Imaging and diagnostic data and its images also be analyzed by the students.			
Course Content			
• X-ray images of chest, fracture bone and its image analysis			
CT im	• CT image of lungs		

• Mammogram

- NMR and MRI images
- Ultrasonography of fetus and its image analysis
- Doppler effects
- To represent basic signals (Unit step, unit impulse, ramp, exponential, sine and cosine).
- To develop a program for obtaining Fourier transform & inverse Fourier transform.
- To develop a program for obtaining Laplace transform & inverse Laplace transform.
- To develop a program for obtaining z- transform & inverse z-transform.
- To develop a program for discrete convolution.
- To develop a program for discrete correlation.
- To develop a program for converting an RGB image to GRAY scale.
- To develop a program for obtaining a histogram of image.
- To develop a program for adding & removing salt n pepper noise.
- To develop a program for performing filtering operations on images.
- To develop a program for blurring & sharpening of an image.

Assessment		
Part A	CIA-I	20 Marks
	CIA-II	20 Marks
Part B	End Semester Exam	60 Marks

SEMESTER-VI

BME 308: Measurements and Instrumentations					
Teaching	Examination Scheme Cred				
Scheme		allocated			
Theory 3	End of semester Examination: 60 marks	Theory-3			
hrs/week	Internal assessment: 40 marks				
Course Prer	equisite: Basic Knowledge of Instrumentation and mathematics				
Course Obj	ective: To understand the occurrence of errors while measuring	a physical			
quantity.					
Course Outo	omes: On completion this course, students will be able to				
CO1: Unders	tand fundamentals of measuring instruments theoretically as well as pra	actically.			
CO2: Study of	of cathode ray oscilloscope in detail with its applications and probe com	pensation.			
CO3: Attain t	basic knowledge about analog instruments.				
CO4: Study I	tend componential collibration and testing of measuring instruments				
CO5: Olders	nowledge about A C bridges and its applications				
	Course Content				
Unit -I	Fundamentals of Measuring Instruments Fundamental methods	15 hrs			
	of measurement classification of measuring instruments static and	10 110			
	dynamic characteristics error classification and analysis standards				
	dynamic characteristics, error crassification and analysis, standards				
	for displacement, force, time, frequency, temperature and electrical				
	standards. IEEE standards.				
Unit-II	Unit 2. Cathode Ray Oscilloscope Construction and operation,	12 hrs			
	measurement of amplitude, phase and frequency with CRO,				
issajous patierns. Fundamentals OI EMI, KF measurements					
	compatibility of measuring instruments				
Unit III	Analog Instruments Analog indicating type instruments based on	12 hrs			
	Analog instruments Analog indicating type instruments based on	12 1115			
	various operating principles, animeters, volumeters, onimineters.				
	Extension of instrument range, instrument transformers.				
	Calibration and Testing of Instruments Measurement of low				
	resistances, voltage, current, phase, frequency, power and energy, Q				
	factor, resistance, noise etc., compensation, calibration and testing				
	of measuring instruments.				
Unit-IV	A.C. Bridges A.C bridges for measurement of inductance,	12 hrs			
	capacitance, Q factor and loss angle, universal impedance bridge.				
	Design aspects. Design aspects of digital multimeter and panel				
	meters. Distortion and spectrum analysis.				
Assessment					
Part A	CIA-I: Unit I and II	20 Marks			
	CIA-II: Unit III, and IV	20 Marks			
Part B	EoSE: Term Exam	60 Marks			

Text book

1. A.k. sawhney, electrical & electronic measurement & instrumentation, dhanpat rai, 2015. Reference Books

1. W. D. Cooper, Electronic Instrumentation and Measurement, Prentice Hall, 1985.

BME 309: Sensors & Transducers in Healthcare			
Teaching	Examination Scheme		
Scheme		allocated	
Theory 3	End of semester Examination: 60 marks		
hrs/week	Internal assessment: 40 marks		
Course Pr	erequisite: 10+2 knowledge in physics, chemistry and biology		
Course Ob	ojective:		
1. To stuc	ly different classes of sensors used in healthcare and analyze the shorte	comings of	
the bio	ogical sensors in real life applications.		
2. To lear	n about different classes of transducers.		
3. To uno	lerstand fundamentals of biological receptors and its applications	in sensor	
develop	oment.		
4. To lear	n engineering principles necessary for healthcare-based sensors.		
Course Ou	Itcomes: On completion this course, students will be able to		
1. Apply	principles and concepts of biology and engineering to design biosensor	S	
2. Apply	principles and concepts of electronics and electrochemistry	to design	
electro	chemical biosensors		
3. Recogn	ize different types of transducers, and their application in biosensor de	sign.	
4. Apply	principles and concepts of sensing and engineering to design bios	ensors for	
detectio	on of markers in biofluids.		
	Course Content		
Unit -I	Introduction And Classes Of Biosensors Used In Healthcare	15 hrs	
	Biosensors- Advantages and limitations, various components of		
	biosensors Biocatalysis based biosensors, Bioaffinity based		
	biosensors & Microorganisms based biosensors, Biologically active		
	material and analyte. Types of membranes used in biosensor		
	constructions Displacement sensors: Resistive sensors strain		
	constructions. Displacement sensors. Resistive sensors, strain		
	sensors, bridge circuits, inductive, capacitive, piezo-electric		
	sensors; Temperature sensors: thermoelectric, radiation		
	thermometry, thermistors, fiber-optic sensors;		
Unit-II	Transducers In Biosensors	12 hrs	
	Various types of transducers; principles, characteristics, accuracy,		
	precision and applications - Calorimetric, Optical, Potentiometric /		
	Amperometric, Conductometric / Resistometric, Piezoelectric,		
	Semiconductor, Impedimetric, Chemiluminiscene - based		
	Biosensors.		
Unit-III	Biosensors - Physiological Receptors - J Receptors And	12 hrs	
	Bioelectronics		

	Chemoreceptors, Baroreceptors, Touch receptors, Biosensors -				
	Working Principle and Types, Biopotentials: Origin of				
	biopotentials, Cell, nerve and muscle protentials, Action potential,				
	resting potential, Membrane structure and Nernst Equation, Nerve				
	cell.				
Unit-IV	Application And Uses Of Biosensors:	12 hrs			
	Biosensors in clinical chemistry medicine and health care				
	Application of enzymes in analysis and diagnostics: design of				
	enzyme electrodes and their application as biosensors in healthcare				
	industry. Biopotential electrodes and biopotential amplifiers, ECG				
	principle, sensing, 12-Lead ECG PQRS characteristics.				
	Assessment				
Part A	CIA-I: Unit I and II	20 Marks			
	CIA-II: Unit III, and IV	20 Marks			
Part F	Part BEoSE: Term Exam				
Text/R	eference Books:				
1.	Medical Instrumentation Application and Design, John Webster Ed. Joh	n Wiley &			
	Sons 2009.				
2.	Operational Amplifiers and linear ICs,R. A. Gayakwad, Phi Learnin	g, 2009.3.			
	Additional research papers distributed in class.				
3.	Brian R Eggins - Biosensors an Introduction, First edition, John Wile	ey & Sons			
	Publishers, 1996.				
4.	4 Loic I Blum Pierre R Coulet - Biosensors Principles and Applications First				
	edition. Marcel Dekker Inc. 1991				
5	Donald G Buerk - Biosensors Theory and Applications First Edition 7	Technomic			
5.	Dubliching Co. Inc. 1002				
6	Fublishing, Co, Inc. 1995.				
0.	Elizabeth A Hall - Biosensors, First Edition, Open University, Milito	on Keynes,			
_	1990.				
7.	Graham Ramsay - Commercial Biosensors, First edition, John Wiley &	Sons, Inc.			
	1998.				
8.	Tran Minh Canh - Sensor Physics & Technology - Biosensors , Fir	st Edition,			
	Champan & Hall 1993				

List of Experiments:				
1.	Implementation of signal conditioning circuits			
2.	To study the characteristics of resistometric transducers			
3.	Sensor design, fabrication and characterization			
4.	To study the characteristics of strain gauge			
5.	To study the characteristics of resistance temperature detector			
6.	Blood pressure measurement using sphygmomanometer.			
7.	Design of instrumentation amplifier.			
8.	Measurement pH using pH meter.			
9.	Galvanic Skin resistance measurement.			
10.	Recording of ECG using ECG simulator.			
11.	Recording of EEG using EEG simulator.			
12.	Recording of EMG using EMG simulator.			

BME 310: Microcontroller and Embedded System				
Teaching Sche	eme	Examination Scheme Cred	ts allocated	
Theory 3 hrs/we	ek	End of semester Examination-60 marks Theory	/-3	
Course Prerequ	isite: A	An undergraduate level course on Digital Electronics	and C	
programming La	inguage).		
Course Objecti	ve: Th	is course introduces the basics of microcontrollers ar	d embedded	
systems to the s	tudents	which focused on introductory study of embedded s	stems using	
8051 microcontr	oller an	d its interfacing to different components covering daily	life problems	
to industrial pro-	oblems.	. The course is heavily oriented towards the progr	amming and	
interfacing of d	ifferent	input/output devices to 8051 microcontroller and th	eir practical	
applications.	0			
Course Outcom	es: On	completion this course, students will be able to		
CO1: Imple	O1: Implement and use 8051 microcontrollers for embedded systems			
CO2: Appl	y Embe	Embedded system concepts to solve real word problems and can present		
soluti	on to a	on to automated systems using microcontrollers for real-life situations.		
CO3: Appl	y conce	concepts of embedded systems and microcontroller to enhance existing		
system	ms by e	ffectively implementing data handling and processing.		
CO4: Abili	CU4: Ability to develop concepts, logics towards solving unknown problem in researc			
and in	ndustry	using microcontrollers and embedded systems.		
Level	Bache	elor		
Course				
Content:				
Unit -I	Introc	luction to Embedded Systems: Overview of Embedde	d 10 hrs	
	system	ns, Design Process in Embedded systems and Syste	n	
	Integr	ration, Challenges in Embedded System Design, IoT		
Unit-II	Embe	edded System Architecture: Instruction Set Architectur	e, 10 hrs	

		CISC and RISC instruction set architecture, Basic Emb Processor/Microcontroller Architecture, 8051/ PIC microcontrollers, 8051 Microcontroller, pinconfiguratio ports and pin, counters, timers, serial I/O, interrupts, ph systems, assembly language for 8051, Instruction s	edded /AVR on, I/O ysical yntax,		
		assembly language, moving data, logical opera arithmetic operations, Jump and Call instructions	ations,		
Unit-III	Unit-III Arduino/Raspberry Pi input-output Interfacing and signal conversion: LED, Switch, 7segment display, LED array, LCD, keyboard, buzzer interfacing, serial communication, ADC and DAC interfacing, sensor interfacing and processing			10 hrs	
Unit-IV		External memory, RTC, and mechanical interfacing: Ex memory interface, real-time clock interfacing, interfac relay, DC motor, Stepper Motor, servo motor.	ternal ing to	10 hrs	
		Internal aggregament			
Pa	rt A	CIA-I: Unit L and II	20	Marks	
1 4		CIA-II: Unit III, and IV	20	Marks	
Pa	rt B	ESE: Term Exam	60	Marks	
 Text/Reference Books: 1. J.W. Valvano, "Embedded Microcomputer System: Real Time Interfacing", Brooks/Cole, 2000. 2. Jack Ganssle, "The Art of Designing Embedded Systems", Newness, 1999. 3. V.K. Madisetti, "VLSI Digital Signal Processing", IEEE Press (NY, USA), 1995. 4. David Simon, "An Embedded Software Primer", Addison Wesley, 2000. 5. K.J. Ayala, "The 8051 Microcontroller: Architecture, Programming, and Applications", Penram Intl, 1996 6. Muhammad Ali Mazidi, Janice Gillespie Mazidi and Rollin D. McKinlay, "The 8051 Microcontroller and Embedded Systems using assembly and C", Pearson, 2006. List of Experiments: 					
1. Fami	liarity to	8051 microcontroller and trainer kit			
2. 8051	/ Arduin	o C programming, hex generation and programming			
3. 8051	. 8051/ Arduino timer and LED blinking and input port				
4. 8051	8051/ Arduino interfacing to LED, LED array				
5. 8051	5. 8051/ Arduino interfacing to 7-segment and 7 segment array				
6. 8051 7. 8051	 8051/ Arduino interfacing to 16 X 2 LCD and switch 8051/ Arduino Serial Communication and interrupts 				
8. Inter	Interfacing with ADC and DAC				
9. Inter	Interfacing to LDR and Temperature Sensor				
10. Inter Stepp	facing to per Moto	External Memory and Real-time clock (RTC) Interfacing or.	g to DC	motor and	

BME 311: Medical Image Processing				
Teaching	Examination Scheme	Credits		
Scheme		allocated		
Theory 3	End of semester Examination-60 marks	Theory-3		
hrs/week				
	Internal assessment:40 marks			
Course Prere	equisite: Knowledge of Linear Algebra and Bio Imaging.			
Course Obj	ective:			
1. To	study the basic concepts used in digital image processing.			
2. To	learn various operations used for processing digital images.			
3. To	lean various algorithms used in image processing.			
<u>4.</u> To	learn various post processing methods.			
Course Out	comes: On completion of this course, students will be able to			
CO1:	Students can understand the basic concepts of image processing.			
CO2: S	Students can apply basic knowledge of linear algebra for image processi	ng.		
CO3: S	Students can detect various region of interest in medical images.			
CO4: S	Students can segment important regions from medical images.			
		10.1		
Unit -I	introduction to digital images. Sampling and quantization of digital	10 nrs		
	Introduction to metricos. Pasia expertition of matrices. Introduction to			
	introduction to matrices. Basic operation of matrices, introduction to			
	modulities such as X ray CT MPL SPET DET and microscopic			
	inoudifies Such as X-ray, C1, MKI, SFE1, FE1 and Incroscopic			
	of 3D images. Significance of digital or medical image processing			
	Introduction of Histogram of an image			
Unit-II	Image enhancement techniques: Image negatives log	10 hrs		
Om-n	transformations power-law transformations piecewise linear	10 1113		
	transformations, power law transformations, piecewise inteal			
	sharpening of image			
	Sampling and transformation of sampled function: Filtering in			
	frequency domain: Image smoothing using frequency domain:			
	Image sharpening using frequency domain filter.			
Unit-III	Introduction to Image segmentation: Line and edge detection	10 hrs		
	technique; Advance technique of edge detection; Basic			
	Thresholding technique; Otsu's Thresholding; Multiple			
	Thresholding method; Region Based Segmentation; Statistical			
	Based models.			
Unit-IV	Introduction to morphological operators; Erosion and Dilation;	10 hrs		
	Duality; Hole filling; Extraction of connected components; Thinning			
	and Thickening; Pruning; Opening and Closing Operators.			
Assessment				
Part A	CIA-I: Unit I	20		
		Marks		
	CIA-II: Unit II, III	20		

		Marks				
Part B	End Semester Exam	60				
		Marks				
Es	Essential Readings					
• Dig	• Digital Image Processing Fourth Edition, by Rafael C Gonzalez and Richard E					
Woo	ods.					
• Fundamental of Digital Image Processing, 1 January 2015, By Anil K Jain						
Med	Medical Image Processing Lab					
List of Experiment:						
1.	Power law transformation of image.					
2.	Image negative of image.					
3.	Study various matrix operations such as addition, subtraction,					
	multiplication and division.					
4.	Smoothing of image.					
5.	Sharpening of image.					
6.	Application of thresholding of image.					
7.	Application of K-means algorithm.					
8.	Application of morphological operators.					

VII Semester

BME 401: Digital Signal Processing					
Teaching	Examination Scheme	Credits			
Scheme		allocated			
Theory 3	End of semester Examination: 60 marks	Theory-3			
hrs/week	Internal assessment: 40 marks				
Course Prer	equisite: An Undergraduate level course on Signal and Systems				
Course Obje	ective: This course introduces the basics concepts of Discrete fourier	transform,			
digital filter	design and application of digital signal processing. The design of III	R and FIR			
discussed in t	bis course. DSP proces	ssor is also			
Course Oute	amos: On completion this course, students will be able to				
Course Out	e and study discrete Fourier transform (DFT) and their implementation				
CO1: Analyz	e and implementation of IIR and FIR filters and their implementation.				
CO2: Analyz	ation and introduction to digital signal processors				
CO3. Applied	aton and introduction to digital signal processors.				
	Course Content				
Unit -I	Discrete Fourier Transforms (DFT): Frequency domain sampling	10 hrs			
	and Reconstruction of Discrete Time Signals. The Discrete Fourier				
	Transform DFT as a linear transformation 12 hrs Properties of the				
	DET: Periodicity Linearity and Symmetry properties				
	Multiplication of two DETs and Circular Convolution Additional				
	DET properties. Linear filtering methods based on the DET: Use of				
	DFT properties. Linear Intering methods based on the DFT. Use of				
	DFT in Linear Filtering, Filtering of Long data Sequences, Fast-				
	Fourier-Transform (FFT) algorithms, Efficient Computation of the				
	DFT: Radix2 FFT algorithms for the computation of DFT and				
	IDFT-decimation in-time and decimation-in-frequency algorithms.				
Unit-II	Design of FIR Filters: Characteristics of practical frequency -	10 hrs			
	selective filters, Symmetric and Antisymmetric FIR filters, Design				
	of Linear-phase FIR filters using windows- Rectangular, Hamming,				
	Hanning, Bartlett windows. Design of FIR filters using frequency				
	sampling method. Structure for FIR Systems: Direct form, Cascade				
Unit III	IOIII and Lattice structures. IIP Filter Design: Infinite Impulse response Eilter Formet Dilinger	10 hm			
	Transformation Design Mathed Analys Eilter wing I	10 1115			
	Iransformation Design Method, Analog Filters using Lowpass				
	prototype transformation. Normalized Butterworth Functions,				
	Bilinear Transformation and Frequency Warping, Bilinear				
	Transformation Design Procedure, Digital Butterworth Filter				
	Design using BLT. Realization of IIR Filters in Direct form I and II.				
Unit-IV	Digital Signal Processors: DSP Architecture, DSP Hardware Units,	10 hrs			
	Fixed point format, Floating point Format, IFixed point digital				
	signal processors, Floating point processors. Application of Digital				
	Signal Processors.				
Assessment					

Part A	CIA-I: Unit I and II	20 Marks
	CIA-II: Unit III, and IV	20 Marks
Part B	EoSE: Term Exam	60 Marks

Textbooks:

1. Proakis & Manolakis, "Digital Signal Processing- Principles Algorithms & Applications", 4th Edition, Pearson education, New Delhi, 2007. ISBN: 81-3171000-9.

2. Oppenheim & Schaffer, "Discrete Time Signal Processing", PHI, 2003.

3. Sanjit K Mitra, "Digital Signal Processing, A Computer Based Approach", 4th Edition. McGraw Hill Education, 2013.

4. D.Ganesh Rao and Vineeth P Gejji, "Digital Signal Processing" Cengage India Private Limited, 2017, ISBN: 9386858231

BME402: Biological Control Systems						
Teaching Schen	ne Examination Scheme	Credits allocated				
Theory 3 hrs/week	End of semester Examination-60 marks	Theory-3				
Course Prerequisite: An undergraduate level course on Control Systems						
Course Objective	e: To understand the basics of Control systems.					
To apply the knowledge of control systems to biological systems.						
To understand the various biological networks using control models.						
Course Outcome	Course Outcomes: On completion this course, students will be able to					
CO1: Interpreting p	CO1: Interpreting physiological systems in terms of control systems and summarizing their					
properties.						
CO2: Developing a	a simple respiratory model.					
CO3: Developing a	a simple cardiovascular model.					
CO4: Summarizing	y various physiological models.					
CO5: Interpreting d	lifferent system identification techniques.					
Level	Bachelor					
Course						
Content:						
Unit -I	Control Systems Perspective for Biological S	Systems:	10 hrs			
	Introduction to physiological control systems, examp	ples of a				
	physiological control system, differences	between				
	engineering and physiological control systems,	art of				
	modelling physiological systems, distributed pa	rameters				
	versus lumped parameter models, simple models of	f muscle				
	stretch reflex action, across and through v	ariables,				
	generalized system properties (viz., impedance, cor	npliance				
	and inertance).					
Unit-II	Human Respiratory Modeling Respiratory mechanism	n, linear	10 hrs			
	model of respiratory mechanics, gas exchange	and				
---	--	---------	--------			
	ventilation-perfusion relationships in the lung, che	emical				
	regulation of ventilation					
	Cardiovascular System Modeling Theoretical basis- c	ardiac				
	cycle & pressures-volume loops, cardiac pressure versu	s time				
	graph, the cardiac output curve, the venous return	curve,				
	closed-loop analysis: heart and systemic circulation com	bined				
Unit-III	Various Physiological Models The Hodgkin-Huxley	model.	10 hrs			
	Westheimer's Saccadic eye model, compartmental r	nodels,				
	integrated cardiopulmonary model.					
Unit-IV	Art of Modeling the Biological Control System	Basic	10 hrs			
	problems in physiological system analysis, nonparametr	ic and				
	parametric identification: numerical deconvolution,	least				
	square estimation, estimation using correlation fund	ctions,				
	estimation in the frequency domain, optimization techn	iques.				
	Problems in parameter estimation.					
	Internal assessment					
Part A	CIA-I: Unit I, and II	20	Marks			
	CIA-II: Unit III, and IV	20	Marks			
Part B	ESE: Term Exam	60	Marks			
Text/Reference Books:						
1. Michael C.K. Khoo, Physiological control systems: Analysis, Simulation and Estimation,						
2nd ed. Wiley-IEEE press, 2018.						
2. Frank C., Hopp	enstead, Charles, Modelling and Simulation in Medicine a	nd the	Life			

Sciences, Springer, 2002.

Reference

1. John H. Milsum, Biological Control System analysis, McGraw hill, 1966.

BME 403: Neuroscience and Neurotechnology		
Teaching	Examination Scheme	Credits
Scheme		allocated
Theory 3	End of semester Examination: 60 marks	Theory-3
hrs/week	Internal assessment: 40 marks	
Course Prer	equisite: Basic knowledge of Anatomy and Physiology of Brain	
Course Ob	jective:	
1.	To study the anatomy and function of brain.	
2.	To study the structural property of brain.	
3.	To study the connectome property of brain.	
Course Out	tcomes: On completion of this course, students will be able to	
	CO1:To study the structure of brain and reason of various brain disorder.	
	CO2. To an denote a location of discussion of discussion CT and MDI	
	CO2: To understand various diagnosis of disorder in CT and MRI	
	CO3: To understand the connectome of brain.	

	Course Content		
Unit -I	Structure of Neurons; Synapse and Axons, Anatomy of Normal brain,	12 hrs	
	White matter, Gray Matter, Lateral Ventricle, Some special brain		
	disorders; Parkinson's disease, Alzeimer's disease, Cerebral Stroke,		
	Types of brain tumors, Traumatic brain injury.		
Unit-II	Brain under CT and MRI; The anatomy of normal brain under CT and	12 hrs	
	MRI; Visualization of tumors and different types of cerebral stroke in		
	CT and MRI.		
Unit-III	Study brain connectome of normal and diseased brain; The concept of	12 hrs	
	connectome; Brain under PET scan and registration of PET and CT		
	scans.		
	Assessment		
Part A	CIA-I: Unit I	20 Marks	
	CIA-II: Unit II	20 Marks	
Part B	End Semester Exam	60 Marks	
ES	SENTIAL READINGS		
• The	Human Brain Book: An Illustrated Guide to its Structure, Function, and D	visorders by	
Rita	Carter.	2	
• Oxford Textbook of Neuroimaging (Oxford Textbooks in Clinical Neurology) by			
Missimo Flippi.			
• Connectome: How the Brain's Wiring Makes Us Who We Are Panerback - 5 February			
2013 by Sabastian Soung			
2015 by Sebastian Seung			

Elective Subjects

	BME 315 Immunotechnology			
Teaching	ng Examination Scheme Cree			
Scheme		allocated		
Theory 3	End of semester Examination: 60 marks	Theory-3		
hrs/week	Internal assessment: 40 marks			
Course Preree	juisite: NA			
Course Obje	ctive:			
1. To pro	ovide a comprehensive idea about the components, properties and fur	nction of		
Course Outo	omes: On completion of this course students will be able to			
	accurate the second the students will be able to			
1. After	completing the course, the student will be able			
2. to ana	lyze the results of an immuno assay including clinical diagr	lostic		
report	S.			
3. to des	ign immune assay as per the requirement			
4. to ana	lyze the immune response by accounting the contribution of particip	ating cells		
and of	her factors.			
	Course Content			
Unit -I	Overview of the mammalian immune system, Evolutionary	10 hrs		
	perspective of immunity and self defense, Innate immunity,			
	adaptive immunity and its characteristics, Antigen and			
	immunogen, Antigen presenting cells and antigen presentation,			
	MHC molecules, Humoral immunity: Structure and function of			
	antibody, antibody diversity. Transplantation immunology,			
	Autoimmune disorder, Allergy and hypersensitivity, Antiviral			
	immunity, Immunology of stem cells, Tumor immunology,			
	Immunoassays. Immunopathology.			
Unit-II	Adjuvant, Vaccines, Use of antibody in diagnostics and therapy,	10 hrs		
	Antibody (Production and purification), Hybridoma Technology:			
	Production of monoclonal antibody, Immunoassays and related			
	screening techniques: Enzyme linked immunosorbent assay			
	(ELISA), Paper radio immunosorbent test (PRIST), Radio			
	immuno assay (RIA), Immunocytochemistry and			
	Immunohistochemistry (ICC & IHC), Immunoblotting (Western			
	blotting), immune-diffusion and immune-electrophoresis.			
Unit-III	Isolation and culture of cells of immune system, In vitro	10 hrs		
	assessment of macrophage activation, Cr51 assay, MACS, Flow			
	cytometry, Adaptive immune cell therapy, Tetramer Technology,			
	Dendritic cell vaccine for cancer, Antibody Engineering,			
	Production of human monoclonal antibody, Xenomouse			
	technology, Antibody phage display library, Lab-on-chip devices			
	for immunoassay, Point-of-care immunoassays,			
	Immunotechnology in transplantation: Tissue typing, Use of			
	immunotherapeutics : Safety, regulation and ethics.			
	Assessment			
Part A	CIA-I: Unit I	20 Marks		

		CIA-II: Unit II, III	20 Marks	
Pa	rt B	End Semester Exam	60 Marks	
ESSE	ENTIAL	READINGS		
1.	J. A. C	Wen, J. Punt, S.A. Stranford, Kuby Immunology, W.H. Freeman	&	
	Compa	ny , 7th Edition, 2018		
2.	P.J. De	elves, S.J. Martin , D. R. Burton , I. M. Roitt, Roitt's Essent	tial	
Immunology, Wiley- Blackwell, , 13th Edition, 2017				
3.	3. Sudha Gangal, Subhangi Sontakke, Textbook of Basic and Clinical			
	Immunology, Orient Blackswan Private Limited, 2013, 1st Edition			
4.	A.K. C	hakravarty, Immunology and Immunotechnology, Oxford univers	sity	
	press, 2006, 1st Edition.			

BME 316-Tissue Engineering and Regenerative Medicine		
Teaching	Examination Scheme	Credits
Scheme		allocated
Theory 3	End of semester Examination-60 marks	Theory-3
hrs/week	Internal assessment:40 marks	
Course Prer	equisite: NA	
Course Ob	jective:	
3. To s	tudy basic concepts of cells, tissues and extracellular matrix.	
4. To le	earn about different types of scaffolds and their synthesis process.	
5. To u	nderstand the basic techniques used in tissue engineering.	
Course Out	tcomes: On completion of this course, students will be able to	
1. Stud	ents can understand the primary concepts of tissue regeneration and	d its
requ	irement in the biomedical field.	
2. Stud	ents can apply basic concepts of biology and engineering to fabrica	ate different
type	s of scaffolds.	
3. Stud	ents can characterize the different properties of the scaffolds.	
4. Stud	ents can learn about the cell culture technique.	
	Course Content	
Unit -I	Introduction to tissue engineering, tissue engineering triad,	10 hrs
	challenges in tissue engineering, sources of cells, cells used to	
	restore the mechanical, metabolic, synthetic, communication	
	and combination defects, cell numbers and growth rate, Tissue	
	organization, Extracellular matrix and Tissue dynamics-	
	epithelial tissue, connective tissue, muscular tissue, nervous	
	tissue, glandular tissue, structure composition and function of	
	extracellular matrix, tissue homeostasis, tissue repair (sequence	
	of events in wound healing) and tissue formation, angiogenesis.	
	Malfunctions in ECM signalling, Malfunctioning morpho-	
	regulatory control loop, Tight junction, Belt desmosomes, Spot	
	desmosomes, Gap junction, Bidirectional nature of cell-cell	

	communication, Malfunctions in direct cell-cell contact		
	signalling, Response to mechanical stimuli.		
Unit-III	Bioreactors in tissue engineering- Establish spatially uniform	10 hrs	
	cell distributions on 3D scaffolds, Maintain desired nutrient and		
	gas concentrations in medium, Expose the developing tissue to		
	physical stimuli. Artificial blood vessels – response to injury,		
	Current clinical approaches with limitations, Improvement of		
	existing synthetic graits, Artificial pancreas and Liver ussue		
	Current clinical approaches with limitations Improvement of		
	existing synthetic grafts. Host integration, bioethics.		
	Applications: Skin tissue engineering, Applications: Bone		
	tissue engineering, Vascular tissue engineering, and Corneal		
	tissue engineering.		
	Assessment		
Part A	CIA-I: Unit I	20 Marks	
	CIA-II: Unit II, III	20 Marks	
Part B	End Semester Exam	60 Marks	
ESSENTI	AL READINGS		
1.	The Principles of Tissue Engineering (4 th edition), by Robert Lanza	, Robert	
	Langer, and Joseph P. Vacanti. Academic Press (AP). 2013		
2.	An Introduction to Tissue-Biomaterial Interactions by K.C. Dee, D.A. Puleo		
2	and R. Bizios. Wiley 2002		
5.	. Culture of Animal Cells: A Manual of Basic Technique and Specialized		
1	applications (our edition), by K. Ian Fresnney. Wiley-BlackWell. 2010 Biometorials Science: An Introduction to Materials and Medicine (2nd edition)		
4.	byBuddy D Ratner Allan S Hoffman Frederick I Schoen and Iacl	F	
	Lemons Academic Press (AP) 2012	х L.	

BME 320 Medical Nanotechnology		
Teaching	Examination Scheme	Credits
Scheme		allocated
Theory 3	End of semester Examination-60 marks	Theory-3
hrs/week	Internal assessment:40 marks	
Course Prer	equisite: NA	
Course Obj	jective:	
1. To understand the current approaches in nano-based medicine and targeted		
drug	delivery.	
2. To prepare them an efficient candidate in the field of nano drug		
formulation for various treatments.		
Course Outcomes: On completion of this course, students will be able to		

1. Possess sound knowledge in nano-biomedicine formulations and delivery system.

2. Also had an idea about personalized medicines importance in various diseases.

	Course Content		
Unit -I	Nanoparticles- structure and preparation for drug - Liposomes,	10 hrs	
	Cubosomes and Hexosomes, DNA based Nanostructures- DNA-		
	protein nanostructures-Methods- Self assembled DNA		
	nanotubes—Nucleic acid Nanoparticles, DNA as a Biomolecular		
	template-DNA branching-Metallization- Properties. Protein and		
	Assembly, recrystalisation, diagnosis, Engineered Nanopores		
	Methods of production Supported bilayers and membrane arrays-		
	Genetic Approaches- Microbial nanoparticles production-		
	Magnetosomes- Bacteriorhodopsins- Nanoproteomics.		
Unit-II	Lipid based Nanoparticles-Liquid nanodispersions- Solid Lipid	10 hrs	
	Nanoparticles (SLP)- Bio functionalisation of SLP,		
	Charatcterisation- Nanoparticles for crossing biological		
	membranes. Information-Driven Nanoassembly- Energetic-		
	Chemical Transformation- Regulation- Traffic		
	across Membranes- Biomolecular Sensing- Self-Replication-		
	Machine-Phase Nano biotechnology Self-Assembled Artificial		
	Transmembrane Ion Channels-types, Methods, Self- Assembling		
	Nanostructures from Coiled-Coil Peptides, Synthesis and		
	Assembly using Bio- Derived Templates- Self-Assembling for		
	Patterned Molecular Assembly.	10 1	
Unit-III	Introduction to drug delivery systems, their targeting potentials,	10 hrs	
	Prodrug concept resealed erythrocytes transdermal Molecular		
	approaches to drug delivery system Ligand mediated		
	endocytosis, ligand anchoring and designing of colloidal drug		
	delivery systems, Drug delivery large molecules - peptides		
	proteins, nucleic acids, antibodies and siRNA. Fundamentals-		
	Physicochemical Principles of Nanosized Drug Delivery		
	Systems-Nanotubes, Nanorods, Nanofibers, and Fullerenes for		
	Nanoscale Drug Delivery, Carbon nanotubes biocompatibility		
	and drug delivery.		
	Assessment		
Part A	CIA-I: Unit I	20 Marks	
De stá D	CIA-II: Unit II, III	20 Marks	
Part B	L DEADINGS	ou Marks	
1 Raie	ev K. Tyagi Neerai Garg, Rahul Shukla, Prakash Singh Risen 2020	Role of	
nove	el Drug Delierv Vehicles in Nanobiomedicine.		
2. Nano	obiotechnology I: Concepts, applications and perspectives, eds. CM	Niemeyer,	
CA Mirkin, Wiley-VCH Verlag GmbH & Co., KgaA, Weiheim (2015).			
3. Nanobiotechnology II: More concepts, applications and perspectives.			
4. Bior	4. Bionanotechnology: Lessons from Nature, David S. Goodsell, John Wiley & Sons -		
Scie	nce, ISBN: 978047146958 (2015).		
5. Handbook of Biomimetics and Bioinspiration : Biologically-Driven Engineering of			
Mate	erials, Processes, Devices, and Systems (In 3 Volumes) Edited by: E	smaiel	
Jabbari, Deok-Ho Kim, Luke P Lee, Amir Ghaemmaghami, Ali Khademhosseini,			

Scientific Series in Nanoscience and Nanotechnology: Volumes 9, 2014.Nano Technology, Rakesh Rathi, S.Chand & Company Limited, New Delhi (2009).

BME 411: Artificial Intelligence and Neural Networks in Medicine			
Teaching Scheme	Examination Scheme	Credits allocated	
Theory 3 hrs/week	End of semester Examination: 60 marks	Theory-3	
	Internal assessment: 40 marks		
Course Prerequisite: Bas	ic knowledge of Anatomy and Physiology of Brain		
Course Objective: To so own network.	study the organization of artificial neural network and how	v to design	
Course Outcomes: On a	completion of this course, students will be able to		
CO1:To lear	n building block of neural networks.		
CO2: To lear	rning about machine vision and machine learning.		
CO3: To lear	rn about deep learning.		
	Course Content		
Unit -I	Design of artificial neural network. Activation function.	12 hrs	
	Weights. Optimization technique. Bias Variance tradeoff.		
Unit-II	Difference between supervised and unsupervised	12 hrs	
	learning. Feature engineering. Basic machine learning		
	methods: K-NN, Decision tree, Random Forest, Support		
Umit III	Vector machine. Curse of dimensionality.	10 hrs	
UIIIt-III	Convinets, Convinet Architectures and Dropout/Regularization/Batchnorm	12 1118	
	ConvNets: Basic concepts of Convolutional Neural		
	Networks starting from filetering. Convolution and		
	pooling operation and arithmatics of these. ConvNet		
	Architectures: Discussions on famous convnet		
	architectures - AlexNet, ZFNet, VGG, C3D, GoogLeNet,		
	ResNet, MobileNet-v1, MobileNet-v2, EfficientNet, U-		
	Net		
	Discussion on regularization, Dropout, Batchnorm etc.		
	Assessment		
Part A	CIA-I: Unit I	20 Marks	
	CIA-II: Unit II	20 Marks	
Part B	End Semester Exam	60 Marks	
ESSENTIAL K	EADINGS		
 Deep learning by Machine Learning 	g by Tom Mitchel TMH publication.		

BME 420: Bioinformatics and Drug Discovery			
Teaching	Examination Scheme	Credits	
Scheme			
Theory 3	End of semester Examination: 60 marks	Theory-3	
hrs/week			
Course Prer	requisite: Knowledge of Bioinformatics and Drug Discovery.		
Course Obj	ective:		
1. Intro	duction to Bioinformatics and Databases		
2. To u	nderstand the Sequence alignment and the drug discovery methods		
3. To a	ddress concepts of molecular modeling for Drug Designing		
4. To e	xploit the algorithm for docking used in drug singing		
Course Out	comes: On completion of this course, students will be able to		
1. Knowled	ge about bioinformatics and bioinformatics databases.		
2. Learn var	rious sequence alignment and drug design methods		
3. Understa	nd the modeling for drug design.		
4. Different	modeling used in docking which helps to understand the drug discovery		
	Course Content		
Unit -I	Introduction to bioinformatics and Databases	12 hrs	
	Introduction to Bioinformatics. Introduction to Biological databases:		
	Organization and management of databases: Searching and retrieval		
	of information from the NCBI: Structure databases– PDB (Protein		
	Data Bank). Molecular Modeling Databases (MMDB): Primary		
	Databases (NCBL, EMBL, DDBJ): Introduction to Secondary		
	Databases Organization and management of databases (Swissprot		
	KEGG): Introduction to BioChemical databases-organization and		
	Management of databases(KEGG, BRENDA)		
Unit-II	Multiple Sequence Alignment and Drug Designing	12 hrs	
	Multiple sequence alignment and phylogenetic analysis. Need for	12 1115	
	aligning biological sequences Smith-Watermann algorithm		
	Needleman-Wunsch algorithm Multiple Sequence Alignment		
	Phylogeny, Applications, BLAST, Introduction Drug Discovery		
	issues. Protein Homology modeling. Target and lead identification		
	Drug and databases. Drug properties and SMILES. Drug solubility		
	and permeability. ADME, Drug-ADME, Drug-blood brain barrier.		
	efflux/drug-likeness		
Unit-III	Molecular Modeling for Drug Designing	10 hrs	
	Molecular modeling, Molecular mechanics and force field. ODES		
	and numerical methods. Conformational search and MD. Quantum		
	mechanics, Quantitative Structure-Activity and Relationship (OSAR)		
Unit-IV	Docking method	4 hrs	
	3D QSAR, Pharmacophore modelling, Target based drug design,		
	Docking, Pharmacokinetics and pharmacodynamics		
	Assessment		
Part A	CIA-I: Unit I, and II	20 Marks	
	CIA-II: Unit III, and IV	20 Marks	
	CIA-II: Unit III, and IV	20 Marks	

Part B EoSE: Term Exam		60 Marks	
Text/R	efere	nce Books:	
1.	Com	putational Drug Design: A Guide for Computational and Medicinal Ch	emists, D.
	C. Y	oung, WileyBlackwell, ISBN: 978-0470126851, 2009.	
2.	H. H	H. Rashidi and L. K. Buehler, Bioinformatics Basics Applications in	Biological
	Scie	nce and Medicine, CAC Press, 2000.	
3.	D. C	Susfiled, Algorithmson Strings Trees and Sequences, CambridgeUnive	ersityPress,
	1997	7.	
4.	Und	erstanding Molecular Simulations: From Algorithms to Applications, l	D. Frenkel
	and	B. Smit, Academic Press, 2002.	
5.	Mole	ecular modeling Principles and Applications. A. R. Leach. Pearson, ISBI	N-13: 978-
	0582	2382107 2001.	
6.	An I	ntroduction to Cheminformatics, A. R. Leach., Springer, ISBN: 978-1-4	020-6291-
	9, 20	000	
7.	D. 1	Mount, Bioinformatics: Sequence and Genome Analysis, Cold Sprin	ng Harbor
	labo	ratory Press (2004), Second Edition	

BME 421: Molecular imaging (imaging of chemistry and biology)			
Teaching	Examination Scheme	Credits	
Scheme		allocated	
Theory 3	End of semester Examination: 60 marks	Theory-3	
hrs/week			
Course Prerequisite: Knowledge of Bioinformatics and Drug Discovery.			
Course Objective:			
1. To characterization and quantification of biological processes taking place at the cellular			
and subcellular levels within intact living subjects.			
2. To learn about different imaging techniques used in the biomedical discipline.			
3. To use the engineering aspects for the detection of diseases.			
Course Outcomes: On completion of this course, students will be able to			
1. Understand the principles of numerous imaging techniques used in hospitals.			
2. Can differentiate and analyze the data obtained from these imaging techniques.			
3. Demonstrate the working of the imaging instruments.			
	Course Content		
Unit -I	Introduction to Molecular Imaging, Optics (physics): 3D fluorescence	12 hrs	
	imaging: Tissue optics, Chemistry of Fluorescence, Optics		
	Application: Intervital Optical Neuroimaging, Optical Reporter		
	Genes		
Unit-II	SPECT Physics, PET Physics, Radiochemistry, PET Imaging of	12 hrs	

	Integrin Expression, Imaging of Apoptosis, MR Basic Principles,		
	Cardiovascular MRI/Targeted MRI Contrast Agents, Neuroimaging		
	by MR		
Unit-III	Spectroscopic Techniques: XRD, XPS, EDX, FTIR Microscopic Techniques: SEM, TEM, AFM, CLSM FRET, BRET	10 hrs	
Assessment			
Part A	CIA-I: Unit I, and II	20 Marks	
	CIA-II: Unit III, and IV	20 Marks	
Part B	EoSE: Term Exam	60 Marks	
Text/Reference Books:			
1. Weissleder R. Molecular imaging: principles and practice. PMPH-USA; 2010.			
2. Yao J, Wang LV. Photoacoustic Molecular Imaging: Principles and Practice. InMolecular			
Imaging 2021 Jan 1 (pp. 233-244). Academic Press.			

Khalid S. Molecular Imaging-1: methods and protocols. New York, NY: Humana press; 2011.