Revised Syllabus

M.Sc. CS (Big Data Analytics) (2 Years Programme)

Syllabus Proposed to be implemented from July-2024 onwards

Department of Data Science and Analytics School of Mathematics, Statistics and Computational Sciences

Central University of Rajasthan

NH-8 Jaipur- Ajmer Highway, Bandar Sindri Kishangarh -305817 District-Ajmer, Rajasthan Website: <u>www.curaj.ac.in</u>

M.Sc. CS (Big Data Analytics)

Program Outcomes (POs)

PO1	Data Science knowledge: Apply the knowledge of machine learning, statistics, and data science fundamentals to the solution of complex real-time problems.
PO2	Problem analysis: Identify, formulate, research literature, and analyze complex data analytics problems to provide conclusions using principles of machine learning, statistics, and data science fundamentals.
PO3	Design/development of solutions: Design solutions for complex real-time problems and design system components or processes that meet the specified needs for the industry and society.
PO4	Conduct research on complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern data analytics tools: Create, select, and apply appropriate techniques, resources, and modern software tools including prediction and modeling to complex data with an understanding of the outcomes.
PO6	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the data analytics practices.
PO7	Communication: Communicate effectively on complex data analytics activities with the data science community, and to improve professional communication skills.
PO8	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological and information change.

Program Specific Outcomes (PSOs)

PSO1	To apply creativity in support of the design, simulation, implementation and inference of existing and advanced technologies in data analytics.
PSO2	To participate & succeed in data science oriented jobs/competitive examinations that offer inspiring & gratifying careers.
PSO3	To recognize the importance of professional developments by pursuing higher studies and positions.

LEVEL-4

Semester- I: M.Sc. CS (BDA)

Course: FU Code: MB	UNDAMENTALS OF PROBABILITY AND STATISTICS D401	
TEACHIN SCHEME:	G EXAMINATION SCHEME:	<u>CREDITS</u> <u>ALLOTED:</u>
Theory: 3 Tutorial: 0 Practical: 1 Hours)	Internal Assessment: 40 Marks CIA-I: 20 Marks (Unit I & II) CIA-II: 20 Marks (Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce)End Semester Examination: 60 Marks (Unit I- IV)	4
Course Prei	requisites: Basic Calculus	
Course Obj	ectives: To develop the knowledge of statistics and probability distribution.	
Course Out Ex Ex So U1 Course Con	comes: After completing the course, the student shall be able to: splain the concept of basic statistics tools and their application in data science. spress the features of discrete and continuous random variables. Note the problems associated with the discrete/continuous distributions & sampling inderstand applications of CLT in data science.	distributions.
		10T + 4D
Unit-I	Data and its Types, Frequency table, histogram, measures of location, measures of spread, skewness, kurtosis, percentiles, box plot. Probability function, conditional probability, Bayes theorem, random variables, discrete and continuous random variables, discrete distributions: binomial, Poisson, geometric, hypergeometric, negative binomial, etc.	121 + 4P (20 hours)
Unit-II	Continuous distributions: uniform, normal, exponential, gamma, Weibull, Pareto, lognormal, Laplace, Cauchy, logistic distributions; properties and applications. Functions of random variables and their distributions using (i) transformation of rv (ii) MGF and (iii) method of Jacobian of transformation.	10T + 3P (18 hours)
Unit-III	Concept of a sampling distribution. Sampling distributions of t, $\chi 2$ and F (central and noncentral), their properties and applications. Goodness of fit and Categorical data analysis, Contingency Table, Measure of Associations. Test for Correlation.	12T + 4P (19 hours)

Unit-IV	Compound, truncated and mixture distributions. Convolutions of two distributions. Order statistics: their distributions and properties. Joint, marginal and conditional distribution of order statistics. The distribution of range and median. Convergence of RV, Central Limit Theorem, Weak law of large numbers.	11T + 4P (20 hours)
Text Book	:	
1. V. M 2. Sh Pr	K. Rohatgi and A.K. MD. Ehsanes Saleh, "An Introduction to Probabilit athematical Statistics", John Wiley and Sons, 2 nd Edition, 2001. Heldon M. Ross, "Introduction to Probability and Statistics for Engineers and Scient ess, 5 th Edition, 2014.	ty Theory and ists", Academic
Reference	Books:	
1. P	Paul L. Mayer, "Introductory Probability and Statistical Applications", Addison-Wes 970.	ley, 2 nd Edition,
2. (George Casella and Roger L. Beger Saleh, "Statistical Inference", Duxbury Press, 2^{nd}	Edition, 2001.
E-Resour	ces:	

1. https://archive.nptel.ac.in/courses/111/105/111105090/

Course: DATABASE MANAGEMENT SYSTEM					
Code: MB	Code: MBD402				
TEACHIN	G SCHEME:	EXAMINATION SCHEME:	CREDITS		
			<u>ALLOTED:</u>		
Theory: 3		Internal Assessment: 40 Marks	4		
Tutorial: 0		CIA-I: 20 Marks (Unit I & II)			
Practical:	1 (2 Hours)	CIA-II: 20 Marks (Written Exams/ Quizzes /Assignment			
		/Presentations/ Viva-Voce)			
		End Semester Examination: 60 Marks (Unit I- IV)			
-					
k					
Course Pro	erequisites: No				
Course Ob	jectives: To dev	relop the knowledge of Database and SQL queries			
Course Outcomes: After completing the course, the student shall be able to:					
• Dr	aw Entity-Relat	ionship diagrams to represent simple database application scenarios			
• W	rite SQL queries	s for a given context in a relational database.			
• Di	scuss normaliza	tion techniques with simple examples.			
• Le	earn the concept	of parallel and distributed database.			
Course Co	ntent:				
Unit-I	Basic Concept	s: Need, purpose and goal of DBMS, Three-tier architecture, ER	12T + 3P		
	Diagram, data	models- Relational, Network, Hierarchical. Database Design:	(18 hours)		
	Conceptual da	tabase design, concept of physical and logical databases, data			
	abstraction and	data independence, data aggregation.			
Unit-II	Relational Da	tabase: Relations, Relational Algebra, Theory of Normalization,	10T + 4P		
	Functional Dep	pendency, Primitive and Composite data types.	(18 hours)		
Unit-III	Application D	evelopment using SQL: DDL and DML, Host Language interface,	11T + 4P		
	embedded SQ	L programming, Stored procedures and triggers and views,	(19 hours)		
	Constraints ass	sertions. NoSQL Databases-MongoDB	. ,		

Unit-IV	Internal of RDBMS: Physical data organization in sequential, indexed random	12T + 4P
	and hashed files. Inverted and multilist structures, B trees, B+ trees, Query	(20 hours)
	Optimization, Join Algorithm, Statistics and Cost Base optimization. Parallel and	
	distributed database. Transaction Processing, concurrency control, and recovery	
	management. Transaction model properties and state Serializability. Lock base	
	protocols, two-phase locking.	

Text Books:

- 1. Elmasri Ramez and Navathe Shamkant, "Fundamentals of Database System", Pearson, 7th Edition, 2017.
- 2. Abraham Silberschatz, Henry F. Korth and S. Sudarshan, "Database System Concepts", McGraw Hill, 7th Edition, 2021.

Reference Book:

1. Ramon A Mata-Toledo and Pauline K. Cushman, "Database Management Systems", Schaum's Outlines, 1st Edition, 2014.

E-Resources:

1. https://archive.nptel.ac.in/courses/106/105/106105175/

Course: FOUNDATIONS OF DATA SCIENCE			
Code: MBD	403		
TEACHING	G SCHEME:	EXAMINATION SCHEME:	CREDITS
			ALLOTED:
Theory: 3		Internal Assessment: 40 Marks	4
Tutorial: 0		CIA-I: 20 Marks (Unit I & II)	
Practical: 1	(2 Hours)	CIA-II: 20 Marks (Written Exams/ Quizzes /Assignment	
		/Presentations/ Viva-Voce)	
		End Semester Examination: 60 Marks (Unit I- IV)	
Course Pre	requisites: No		
Course Obj	ectives: To dev	velop the knowledge of data collection, processing, analysis and visual	ization.
Course Out	comes: After c	ompleting the course, the student shall be able to:	
• Cov	ver the technica	al pipeline from data collection, to processing, analysis, and visualizati	on.
• Understand the concept of graphs.			
• Uno	derstand the co	ncept to represent data into high dimensional space.	
Act	nieve the practi	cal exposure of dimensionality reduction.	
Course Con	tent:		
Unit-I	Data Collectio	on: Concepts of measurement, scales of measurement, design of data	12T + 3P
	collection for	mats with illustration, data quality and issues with data collection	(18 hours)
	systems with	examples from business, Data preparation, Data pre-processing,	
	Data Integratio	on, Data Transformation.	105. (D
Unit-II	Graph: Introd	uction to Graph, Application of Graphs, Finite and Infinite Graphs,	10T + 4P
	Incidence & L	Degree, Isolated Vertex, Pendant Vertex, Null Graph.	(18 hours)
	Paths & Circu	itts: isomorphism. Subgraphs, walks, Paths, and Circuits, Connected	
	and Circuits.	onnected Graphs, and Components, Euler Graphs, Hamiltonian Paths	
	Trees & Fund	amental Circuits: Trees, Some properties of trees, Pendant Vertices	
	in a Tree, Dis	stance and Centers in a Tree, Rooted and Binary Trees, Spanning	
	Trees.		
	Cut-Sets & Cu	ut-Vertices: Cut-Sets, Some Properties of a Cut-Set, All Cut-Sets in a	

	Graph Fundamental Circuits and Cut-Sets Connectivity and Separability				
	Notice lower				
	Network Flows.				
	Random Graphs: Large graphs, G(n,p) model, Giant Component, Connectivity,				
	Cycles, Non-Uniform models, Applications.				
Unit-III	High Dimensional Space: Properties, Law of large number, Sphere and cube in	11T + 4P			
	high dimension, Generation points on the surface of sphere, Gaussians in high	(19 hours)			
	dimension, Random projection, Practical applications of t-SNE, Multidimensional				
	Scaling, Manifold Learning, UMAP.				
Unit-IV	The General Models for Massive Data Problems: Topic Models - Non-Negative	12T + 4P			
	Matrix Factorization, Latent Dirichlet Allocation (LDA).	(20 hours)			
	Singular Value Decomposition, Dimensionality Reduction: Principal Component				
	Analysis, Independent Component Analysis, Linear Discriminant Analysis and				
	Practical implementation.				
Text Books	:				
1 Av	rim Blum John Honcroft and Ravindran Kannan "Foundations of Data Science	e" Cambridge			

- 1. Avrim Blum, John Hopcroft and Ravindran Kannan, "Foundations of Data Science", Cambridge University Press, 1st Edition, 2020.
- 2. Narsingh Deo, "Graph Theory", PHI, 1st Edition, 2017.

Reference Books:

1. B. Uma Maheswari and R. Sujatha, "Introduction to Data Science: Practical Approach with R and Python", Wiley India Pvt Ltd., 1st Edition, 2021.

E-Resources:

1. <u>https://onlinecourses.swayam2.ac.in/imb24_mg31/preview</u>

Course: LINEAR ALGEBRA AND ITS APPLICATIONS Code: MBD404

TEACHING SCHEME:	EXAMINATION SCHEME:	<u>CREDITS</u> ALLOTED:
Theory: 2 Tutorial: 0 Practical: 1 (2 Hours)	Internal Assessment: 40 Marks CIA-I: 20 Marks (Unit I & II) CIA-II: 20 Marks (Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce) End Semester Examination: 60 Marks (Unit I- IV)	3

Course Prerequisites: No

Course Objectives: To develop the knowledge of matrices, Linear transformations, Eigenvalues and vectors.

Course Outcomes: After completing the course, the student shall be able to:

• Solve systems of linear equations using multiple methods, including Gaussian elimination and matrix inversion.

- How to apply all of the essential vector and matrix operations for machine learning and data science
- Carry out matrix operations, including inverses and determinants.
- Implement linear algebra concepts in scientific programming languages, and apply linear algebra concepts to real datasets

Course Co	ontent:			
Unit-I	Matrices, System of Linear Equations, Elementary Row Operations, Row Reduced Matrices, Invertible Matrices. Fields, Vector spaces, Subspaces, Linear Combinations, Linear span, Linear dependence and Linear independence of vectors, Basis and Dimension, Ordered Basis, Finite dimensional vector spaces.	7T + 4P (15 hours)		
Unit-II	Linear transformations and their representation as matrices, Kernel and Image of a linear transformation, Rank and Nullity Theorem, Change of Basis, Eigenvalues and Eigenvectors of a linear transformation (matrices), Eigendecomposition of symmetric matrices, Eigendecomposition of singular matrices, Characteristic polynomial and minimal polynomial, Diagonalization of linear operators, invariant subspaces, Jordan	8T + 3P (14 hours)		
Unit-III	Normed space, Inner product spaces, Cauchy-Schwarz-inequality, Orthogonal vectors, Orthonormal sets and bases, Projections, decompose vector to orthogonal components, Gram-Schmidt algorithm. Positive Definite and Positive Semi-definite Matrices, Rayleigh quotient, Linear functional on an Inner Product Space and Adjoint of a Linear operator, Self-adjoint operators, Normal Operators, Spectral theory of matrix, Spectral Decomposition, The Trace Operator. Quadratic forms.	7T + 4P (15 hours)		
Unit-IV	Numerical methods: Bisection Method, Newton Raphson, Steepest Ascent, method of conjugate gradients; Direct and iterative methods for solving a linear system of equations: Gaussian elimination, LU factorization, Cholesky method, QR factorization, Householder's matrices, Jacobi's method, Gauss-Seidel method, successive over-relaxation methods (SOR), conditioning of a problem.	8T + 4P (16 hours)		
Text Book: 1. Sheldon Axler, "Linear Algebra Done Right (Undergraduate Texts in Mathematics)". Springer, 3 rd				
Ed 2. Ll	 Edition, 2015. Lloyd N. Trefethen and David Bau III, "Numerical Linear Algebra", 1st Edition, SIAM,1997. 			
Reference	e Books:			
1. Gi 2. M	 Gilbert Strang, "Linear Algebra and learning from data", Wellesley-Cambridge Press, 2019. Mike Cohen, "Practical Linear Algebra for Data Science", O'Reilly, 1st Edition, 2022 			
E-Resour 1. <u>h</u>	E-Resources: 1. <u>https://archive.nptel.ac.in/courses/111/106/111106051/</u>			

Course: PR	OGRAMMIN	G IN PYTHON	
TEACHING	G SCHEME:	EXAMINATION SCHEME:	CREDITS
Theory: 2		Internal Assessment: 40 Marks	3
Tutorial: 0		CIA-I: 20 Marks (Unit I & II)	
Practical: 1	(2 Hours)	CIA-II: 20 Marks (Written Exams/ Quizzes /Assignment	
		/Presentations/ Viva-Voce)	
		End Semester Examination: 60 Marks (Unit I- IV)	
Course Pre	requisites: No		
Course Obj	ectives: To dev	elop the knowledge of Python Programming and Data Structure	
Course Out	comes: After c	ompleting the course, the student shall be able to:	
• Un	derstand the ba	sic concepts of Python programming	
• Cre	eate and use fur	ctions, including built-in functions, user-defined functions, and lambda	functions.
• Em	ploy various	Python data structures such as matrices, data frames, arrays, tup	les, lists, and
dict	tionaries.		
• Der	monstrate profi	ciency in file handling, including opening, reading, and writing struc	tured and text
file	S.		
Course Con	itent:		
Unit-I	Introduction	to Python: Basics of Python, Identifiers, literals, keywords,	7T + 4P (15
	indentation,	Strings, input and output statements, basic operators (arithmetic,	hours)
	logical, relation	onal, bitwise and assignment), global variables, iterations-for, while,	
	do-while, Cor	ntrol structures-exit function, break, continue, if-else	
Unit-II	Functions and	anonymous functions- built-in functions, user-defined functions, and	8T + 3P
	lambda functi	ons, recursion, scoping, and modules.	(14 hours)
Unit-III	Python Data	structures: matrix, data frames, array, tuples, lists, dictionaries, lists,	8T + 3P
	and mutability	y, string handling	(14 hours)
	Object-orient	ed programming, abstract data types, classes, inheritance,	
	Eile Hendlich	2. and Europetians Handling: Introduction to Eilog and the Con Cla	7T 4D
Unit-1V	File Handlin	g and Exceptions Handling. Introduction to Files, modes for file	/1 + 4P
	opening, read	and writing structured and text mes, closing and deletion of mes,	(15 nours)
	errors, and ex	ceptions.	
	Essential Lib	raries: Pandas, NumPy, Scikit-learn, Matnlotlih, SciPy, Statsmodels	
	Seaborn etc	turios. Fundus, Turin y, Senki fouri, Inteprotito, Sen y, Stusinouois,	
Text Books:			
1. Joh	n V. Guttag. "I	ntroduction to Computation and Programming using Python". PHI. 202	2.
2. Jake Vander Plas, "Python Data Science Handbook – Essential Tools for Working with Data", O'Reilly			
Me	dia Inc, 2016		, J
Reference E	Books:		

1. Michael T. Goodrich, "Data structures and Algorithms in Python", Wiley, 2020.

E-Resources:

Course: PROFESSIONAL	L COMMUNICATION		
Code: MBD406			
TEACHING SCHEME:	EXAMINATION SCHEME:	CREDITS ALLOTE D:	
Theory: 2 Tutorial: 0 Practical: 0	Internal Assessment: 40 MarksCIA-I: 20 Marks (Unit I & II)CIA-II: 20 Marks (Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce)End Semester Examination: 60 Marks (Unit I- IV)	2	
L L			
Course Prerequisites: No			
Course Objectives: To dev	velop the knowledge of communication theory and processes.		
Course Outcomes: After completing the course, the student shall be able to:			
Understand and ap	ply communication theory.		
• Critically think abo	out communication processes and messages.		
• Write effectively f	for a variety of contexts and audiences		
Communicate cont	fidently in professional environmen		
• communicate with	a confidence in professional environment		
Unit-I Fundamentals of	f Communication	(7 Hours)	
 Definitio Types of Purpose Barriers 	on, Process, Importance of Communication ⁵ Communication of Professional Communication to Communication		

Unit-I	Oral Communication:	(8 Hours)
Ι	 Listening Skill – Effective Listening Intensive Listening vs Extensive listening Techniques of Effective Listening Listening and Note Taking Speaking Skills Paralinguistic features Rate Pauses Volume Pitch/Intonation/Voice Modulation Pronunciation and Articulation Activities Group Discussions Debates Interviews Public Speaking Readings Skills Effective Reading Types of Reading (Skimming, Scanning, Extensive Reading, Intensive Reading) 	
Unit-I	Written communication:	(7 Hours)
П	 Academic Writing Critical Thinking Technical Writing vs Creative Writing Paragraph Writing (structure, construction, coherence and cohesion) Business Letters (Acknowledgement letter, Appreciation letter, Order letter) Business Reports Research Papers Advertising, Notices, Emails Resume writing, Cover Letter 	
Unit-I V	 Soft Skills: Body Language – Personal Appearance, Gesture, posture, facial expression, eye contact Proxemics/ Space Distance 	(8 Hours)

Text Books:

- 1. Banerjee Meera and Mohan Krishna, "Developing Communication Skills", Macmillan Publications, 1990.
- 2. Chaturvedi, P.D., "Business Communication", Pearson Publications, 2013

Reference Books:

•

- 1. M.J. Mathew, "Business Communication", RBSA Publications, 2005.
- 2. Taylor Shirley, "Communication for Business", Pearson Publications, 2005

E-Resources:

- 1. https://nptel.ac.in/courses/102104061
- 2. https://nptel.ac.in/courses/102104061

Semester- II: M.Sc. CS (BDA)

Course: MACHINE LEARNING Code: MBD407			
<u>TEACHIN</u>	<u>G SCHEME:</u>	EXAMINATION SCHEME:	<u>CREDITS</u> <u>ALLOTED:</u>
Theory: 2 Tutorial: 0 Practical: 2 (4 Hours)		Internal Assessment: 40 Marks CIA-I: 20 Marks (Unit I & II) CIA-II: 20 Marks (Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce) End Semester Examination: 60 Marks (Unit I- IV)	4
Course Pre	requisites: No		
Course Obj	jectives: To devel	op the knowledge of machine learning algorithms, data analytics	solutions.
 Course Outcomes: After completing the course, the student shall be able to: Understand the types of machine learning algorithms. Understand the concept of different types of artificial neural network architectures. Understand the back-propagation neural network architecture and its training algorithms. Learn the deep learning architecture and algorithms. 			
Course Co	ntent:		
Unit-I	Basics: Introduction to Machine Learning, Different Forms of Learning-Supervised Learning, Semi-supervised Learning and Unsupervised Learning, Reinforcement Learning, Hypothesis space, inductive-bias, bias-variance trade-off, cross-validation methods.7T + 8P (23 hours)Regression: Simple linear and multi-variable regression, Ridge Regression, Learning Methods:7T + 8P (23 hours)		7T + 8P (23 hours)
	classification, I Classification, Sigmoid, Polync Decision Trees.	Logistic Regression, Naive Bayes Classifier, Large Margin Kernel Methods-Radial Basis function, Gaussian Kernel, omial, etc., Support Vector Machines, Multi-class Classification,	
Unit-II	Artificial Neura Network, Evolu Network, Impor Separability, Hel	I Network & Classification: Fundamental of Artificial Neural ation of Neural Networks, Basic Models of Artificial Neural tant Terminologies of ANNs, McCulloch-Pitts Neuron, Linear bb Network.	8T + 7P (22 hours)

	Perceptron Networks: Theory, Perceptron Learning Rule, Architecture, Perceptron Training Algorithm for Single Output Classes, Perceptron Training Algorithm for Multiple Output Classes, Perceptron Network Testing Algorithm.	
Unit-III	Back-Propagation Network: Theory, Architecture, Training Algorithm, Learning Factors of Back-Propagation Network, Testing Algorithm of Back-Propagation Network.	7T + 8P (23 hours)
Unit-IV	Deep Learning: Introduction to Deep Learning, Vanishing Gradient, Overfitting, Computational Load. CNN: Padding and Strides, Convolution Operation, Pooling Operation, Convolution Layer. Introduction to AlexNet, VGGNet, Residual Network, Inception Network, and Transfer Learning.	8T + 7P (22 hours)

Text Books:

- 1. Tom Mitchell, "Machine Learning", McGraw-Hill, 1st Edition, 1997.
- 2. Christopher Bishop, "Pattern Recognition and Machine Learning", Springer, 1st Edition, 2016.

Reference Books:

- 1. Ryszard S. Michalski, Jaime G. Carbonell, Tom M. Mitchell and Morgan Kaufmann, "Machine Learning: An Artificial Intelligence Approach", Springer, 1st Edition, 1995.
- 2. Martin T. Hagan, Howard B. Demuth and Mark Beale, "Neural Network Design", Cenage Learning, 1st Edition, 1996.

E-Resources:

Course: DATA STRUCTURES AND ALGORITHMS Code: MBD408			
TEACHING SCHEME:	EXAMINATION SCHEME:	<u>CREDITS</u>	
Theory: 2	Internal Assessment: 40 Marks	4	
Tutorial: 0	CIA-I: 20 Marks (Unit I & II)		
Practical: 2 (4 Hours)	CIA-II: 20 Marks (Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce) End Semester Examination: 60 Marks (Unit I- IV)		
Course Prerequisites: No			
Course Objectives: To understand the concepts of algorithms and data structures.			
 Course Outcomes: After completing the course, the student can Implement and empirically analyse data structures like Arrays, Stacks, linked list and queues. 			

- Perform different search and sorting operations.
- Analyze the computational complexities.
- Design algorithms like divide and conquer,

Course Co	ontent:	
Unit-I	Introduction to data structures: Arrays, Stacks and queues: insertion, deletion, and basic operations on stacks, arrays, queues, circular queues, and dequeue. Linked Lists: Single, double, and circular linked lists, insertion, deletion, and basic operations on Linked lists, Hash Tables.	8T + 7P (22 hours)
Unit-II	Sorting and searching techniques: linear search, binary search, insertion sort, selection sort, merge sort, quick sort, bubble sort. Computational Complexity: O-notation, Ω -notation, Θ -notation, Classes P, NP - Verifiability, NP-Hard - Reducibility, NP Complete.	7T + 8P (23 hours)
Unit-III	Advanced algorithm techniques: Divide & Conquer-Strassen's Matrix Multiplication, Counting; Inversion, Greedy Algorithms- Minimum Spanning Trees, Prims and Krushkal's; Dynamic Programming-rod cutting, Longest Common Subsequence	7T + 8P (23 hours)
Unit-IV	Trees and Graphs: definition and concepts, different types of trees. Graph Problems: Clique, Vertex Cover, Independent Set, Hamiltonian Cycle Problem, Travelling Salesman Problem, Graph Partitioning, Subgraph problem, Graph Isomorphism, Graph Coloring.	8T + 7P (22 hours)
Text Book 1. T. E. 2. Jo	s: H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein, "Introduction to Algorithms", I dition, 2022. on Kleinberg, Eva Tardos, "Algorithm Design", Pearson Education, 1 st Edition, 2013.	MIT Press, 4 th
Reference	Book:	

1. Seymour Lipschutz, "Data Structures", McGraw Hill Education, 2019.

E-Resources:

Course: ADVANCED STATISTICAL METHODS Code: MBD409			
TEACHING SCHEME:	EXAMINATION SCHEME:	CREDITS ALLOTED:	

Theory: 3		Internal Assessment: 40 Marks	3
Tutorial:	0	CIA L 20 Martin (Unit I & H)	
Fractical:	U	CIA-II: 20 Marks (Unit I & II) CIA-II: 20 Marks (Written Exams/ Ouizzes /Assignment	
		/Presentations/ Viva-Voce)	
		,	
		End Semester Examination: 60 Marks (Unit I- IV)	
Course P	rerequisites: No		
Course O	bjectives: To deve	elop the knowledge of sample and population, hypothesis testing	
Course O	utcomes: After co	mpleting the course, the student shall be able to:	
• [Draw the hypothesi	s testing decision matrix and explain the contents.	
● [● T	Inderstand the cate	gorical data and study tic processes and type of Markov chains	
• S	tudying the differe	ent statistical methods to understand real life phenomena.	
	, ,	1	
a a			
Course Co	ontent:		
Unit-I	Estimation: Unbi	iasedness, Consistency, Efficiency and Sufficiency, UMVUE,	(10 Hours)
	Maximum likelih	ood estimates, Method of least squares, Confidence interval.	
∐nit_II	Test of Hypothes	es: Types of errors t-test statistic parametric tests for equality	(12 Hours)
Onit-II	of means & varia	nces. one-way and two-way ANOVA	(12 110013)
Unit-III	Stochastic Proces	sses, Random Walk, Markov Process, Markov Chain, Discrete	(12 Hours)
	Distributions Sta	itionary Distributions Markov Chain Monte Carlo	
Unit-IV	Continuous time	Markov chains, Poisson processes, birth and death processes,	(11 Hours)
	Kolmogorov diffe	erenual equations.	
			I
T. 4 D.	L		

Text Book:

- Kishor S. Trivedi, "Probability and Statistics with Reliability, Queueing and Computer Science Applications", John Wiley, 2nd Edition, 2001.
- 2. Sheldon M. Ross, "Introduction to Probability and Statistics for Engineers and Scientists", Academic Press, 5th Edition, 2014.

Reference Book:

1. P. J. Bickel and K.A. Docksum, "Mathematical Statistics", Prentice Hall, 2nd Edition, 2000.

E-Resources:

0 -		E BRACECONCIAND COMPLETE MICLON	
Course: D	PIGITAL IMAG 2D410	E PROCESSING AND COMPUTER VISION	
TEACHIN	NG	EXAMINATION SCHEME:	CREDITS
SCHEME	:		ALLOTED:
Theory: 2		Internal Assessment: 40 Marks	3
Tutorial:)	CIA-I: 20 Marks (Unit I & II)	
Practical:	1 (2 Hours)	CIA-II: 20 Marks (Written Exams/ Quizzes /Assignment	
		/Presentations/ Viva-Voce)	
		End Semester Examination: 60 Marks (Unit I- IV)	
Course Pr	erequisites: No		
Course O	bjectives: To eq	uip students with the theoretical knowledge and practical skills necess	sary to analyze,
enhance, a	nd manipulate di	gital images for a wide range of applications.	
Course O	utcomes: After c	completing the course, the student shall be able to:	
• U	nderstand Image	Processing Principles.	
• P	roficient in Imag	e Enhancement and Restoration.	
• C	ompetence in Im	age Segmentation and Feature Extraction.	
• A	pply Image Pro	cessing in Practical Scenarios and Proficient Use of Image Proces	sing Tools and
S.	ottware.		
Lunit T	Intent:	reference in Europiano I accention and Contract Contract	7T 4P
Unit-I	Intensity Ira	nsformation Functions: Logarithmic and Contrast-Stretching	/I + 4P
	I ransformation	is, Specifying Arbitrary Intensity Transformations, Some Utility	(15 hours)
	Listogram Dr	neusity Italisiofiliations.	
	Histograms Hi	istogram Equalization Histogram Matching (Specification)	
	Snatial Filterin	g: Linear Spatial Filtering Non-linear Spatial filtering	
IInit-II	A Model of th	6. Image Degradation/Restoration Process: Noise Models Adding	8T + 3P
	Noise to Image	es Generating Spatial Random Noise with a Specified Distribution	(14 hours)
	Periodic Noise	Estimating Noise Parameters.	(14 nours)
	Restoration in	the Presence of Noise Only-Spatial Filtering: Spatial Noise Filters	
	Adaptive Spat	tial Filters. Periodic Noise Reduction Using Frequency Domain	
	Filtering, Mod	leling the Degradation Function, Direct Inverse Filtering, Wiener	
	Filtering, Cons	trained Least Squares (Regularized) Filtering.	
Unit-III	Preliminaries:	Some Basic Concepts from Set Theory, Binary Images, Sets, and	8T + 4P
	Logical Operat	ors, Dilation and Erosion.	(16 hours)
	Combining D	ilation and Erosion: Opening and Closing, The Hit-or-Miss	(10 nours)
	Transformation	n, Using Lookup Tables, Labeling Connected Components.	
	Morphological	Reconstruction: Opening by Reconstruction, Filling Holes,	
	Clearing Borde	er Objects. Gray-Scale Morphology: Dilation and Erosion, Opening	
	and Closing Re	econstruction.	

Unit-IV	Thresholding: Foundation, Basic Global Thresholding, Optimum Global	7T + 4P
	Thresholding Using Otsu's Method, Using Image Smoothing to Improve Global	(15 hours)
	Thresholding, Using Edges to Improve Global Thresholding, Variable	· · · ·
	Thresholding Based on Local Statistics, Image Thresholding Using Moving	
	Averages.	
	Region-Based Segmentation: Basic Formulation, Region Growing, Region	
	Splitting and Merging.	

Text Books:

- 1. R. C. Gonzalez, R. E. Woods and S. L. Eddins, "Digital Image Processing using MATLAB", McGraw Hill, 6st Edition, 2008.
- 2. M. Sonka, V. Hlavac and R. Boyle, "Image Processing, Analysis and Machine Vision", Springer, 1st Edition, 2013.

Reference Book:

1. A. Marion, "Introduction to Image Processing", Springer, 1st Edition, 2013.

E-Resources:

Course: ECONOMETRICS AND FINANCE			
Code: MBD411			
TEACHING SCHE	ME: EXAMINATION SCHEME:	<u>CREDITS</u>	
		<u>ALLOTED:</u>	
Theory: 2	Internal Assessment: 40 Marks	3	
Tutorial: 0	CIA-I: 20 Marks (Unit I & II)		
Practical: 1 (2 Hour	rs) CIA-II: 20 Marks (Written Exams/ Quizzes /Assignment		
	/Presentations/ Viva-Voce)		
	End Semester Examination: 60 Marks (Unit I- IV)		
Course Prerequisite	es: No		
Course Objectives:	To develop the knowledge of basic statistics, econometric computer pack	kages, interpret	
linear-regression.			
Course Outcomes: A	After completing the course, the student shall be able to:		
 Comfortable 	e with basic statistics and probability.		
• To use a sta	atistical/econometric computer package to estimate an econometric model	and be able to	
report the re	esults of their work in a non-technical and literate manner.		
Able to est	timate and interpret linear regression models and be able to distinguish betw	ween economic	
and statistic	al importance.		
• Able to crit	ique reported regression results and interpret the results for someone who i	s not trained as	
an economis	st.		
Course Content:			
Unit-I Introduc	tion to Econometrics (using finance concepts): Assumptions of Classical	7T + 4 P	
	Regression Model Ordinary Least Squares approaches Autocorrelation	(15 hours)	
Heteros	cedasticity Multi collinearity Dummy Variable approaches and	(10 110113)	
Distribu	ited lag models		
Unit-II A brief	Introduction to Time Series and Panel data models. Components of time	8T + 4 P	
	Stationary and non-stationary time series ARMA and ADIMA models	(16 hours)	
	stationary and non-stationary time series, ARMA and ARMA models,]		

	Static panel data models: fixed effects and random effects.	
Unit-III	Basics of Finance: Time value of money, concept of present and future value analysis stock and hond valuations, risk and return. Systematic and unsystematic	7T + 4P (15 hours)
	risk, Diversification, cost of capital, capital structure,	(13 nours)
Unit-IV	Dividend Discount Model, Portfolio Theory, Efficient Market Hypothesis (EMH),	8T + 3 P
	Capital asset pricing model (CAPM), Market Volatility, Options.	(14 hours)
Text Books	5:	
1. Ri	chard A. Brealey, Stewart C. Myers, Franklin Allen and Pitabas Mohanty, "Princip	le of Corporate
Fi	nance", Tata McGraw Hill Education Pvt. Ltd., 10th Edition, 2012.	
2. Cl	2. Chris Brooks, "Introductory Econometrics for Finance", Cambridge University Press, 1 st Edition, 2014.	
Reference	Books:	
1. Pa	mela Peterson Drake and Frank J. Fabozz, "The Basics of Finance: An Introduction	on to Financial
M	arkets, Business Finance and Portfolio Management", John Wiley & Sons, Inc., 1st Ed	ition, 2010.
2. Je	Jeffery M. Wooldridge, "Introductory Econometrics: A Modern Approach", Cengage Learning, 1st	
Ec	lition, 2015.	
3. Da	amodar N. Gujarati, "Econometrics by Example", Tata McGraw Hill Education Pvt. I	Ltd., 1 st Edition,
20)11.	
E-Resourc	es:	
1. <u>ht</u>	tps://archive.nptel.ac.in/courses/130/106/130106001/	

LEVEL-4: ELECTIVE COURSES

Course: VISUALIZATION TOOLS Code: MBD431			
TEACHING <u>SCHEME:</u>	EXAMINATION SCHEME:	CREDITS ALLOTED:	
Theory: 1 Tutorial: 0 Practical: 2 (4 Hours)	Internal Assessment: 40 Marks CIA-I: 20 Marks (Unit I & II) CIA-II: 20 Marks (Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce) End Semester Examination: 60 Marks (Unit I- IV)	3	
Course Prerequisites: N	0		
Course Objectives: To develop the knowledge of visualization.			
Course Outcomes: After completing the course, the student shall be able to:			

- Build professional-quality business intelligence reports from the ground up ٠
- Design and implement the same tools used by professional analysts and data scientists Blend and transform raw data into beautiful interactive dashboards •
- •
- Explore powerful artificial intelligence tools and advanced visualization techniques •

Course Content:

Unit-I	Principles of visualization: Data visualizations best practices, Purpose of visualization, visual perception, cognitive issues - evaluation, principles behind information visualization, Art of storytelling using visualization, different methods of presenting data in business analytics.	3T + 7P (17 hours)
Unit-II	MS Excel: Introduction to MS Excel, MS Excel fundamentals, working with basic Excel functions, Formatting data in an Excel worksheet, Excel templates, Excel list function, Importing & Exporting data, filters, sorting, data validation, Data validation, Freezing of rows/columns,	4T + 7P (18 hours)
	Basic Excel charts & Graphs: Excel chart formatting & Customization., Excel Bar & Columns Charts, Excel Histograms & Pareto Charts, Line Charts & Trendlines, Excel Pie Charts, Scatter Plots, Excel Box & Whisker Charts, Excel Heat Maps with Conditional Formatting, Excel Surface & 3D Contour Charts, Geo-Spatial Mapping with Excel Power Map.	
Unit-III	Advanced Excel: Excel Formula, Powerpivot tools. Large sets of Excel data, Protection of sheets/columns, Conditional Functions, Lookup functions, Text Based function, Protecting worksheets, "What If" tools, Automating repetitive tasks, Excel macros, VBA tools, VBA logic statements.	4T + 8P (20 hours)
	Advanced Charts: Creating Custom Image Overlay Charts, Automating charts with named ranges, Creating Interactive Area Charts to Show Changes Over Time, Building a dynamic excel dashboard, Advanced Excel Data Visualization Technique	
	Exploratory data analysis with excel : Data Collection, Data Cleaning, Data Exploration, Data Visualization, Data Interpretation, Reporting.	
Unit-IV	Power BI: Introduction to Microsoft Power BI Desktop, installing Power BI, connecting data with Power BI and creating and shaping data visualizations, Charts and graphs, creating data models, Working with calculations and expressions, Calculated field with Dax, Dashboard and stories. Application in AI, Optimization tools.	4T + 8P (20 hours)
	Tableau: Introduction to Tableau, installing Tableau, connecting data with Tableau, Creating Data Extracts in Tableau, creating data visualizations, Charts and graphs, Working with Data Blending in Tableau, Parameters, Working with calculations and expressions, Advanced Data Preparation, Dashboard and stories, clusters, custom territories, design features.	
	A project: using everything at once in a real-life project.	

Text Book:

- 1. Nussbaumer Knaflic and Cole, "Storytelling With Data: A Data Visualization Guide For Business Professionals", Wiley, 1st edition, 2015.
- 2. Alberto Ferrari and Marco Russo," Introducing Microsoft Power BI", Microsoft Press, 2017.
- 3. Marleen Meier and David Baldwin, "Mastering Tableau 2021: ImplementAdvanced Business Intelligence Techniques and Analytics with Tableau", 3rd Edition, Packt Publishing Limited, 2019.
- 4. Adam Ramirez, "Excel Formulas and Functions 2020: The Step by Step Excel Guide with Examples on How to Create Powerful Formulas (Excel Academy Book 1)", Caprioru, 2020.

Reference Books:

- 1. Ferrari Alberto and Russo Marco, "Analyzing Data with Power BI and Power Pivot for Excel (Business Skills)", Microsoft Press, 1st Edition, 2019.
- 2. George Mount, "Advancing into Analytics: From Excel to Python and R", O'Reilly, 1st Edition, 2021.
- 3. Jeremey Arnold, "Learning Microsoft Power BI: Transforming Data into Insights (Grayscale Indian Edition)", O'Reilly, 1st Edition, 2022.
- 4. Ryan Sleeper, "Practical Tableau: 100 Tips, Tutorials, and Strategies from a Tableau Zen Master (Greyscale Indian Edition)", O'Reilly, 2018.
- 5. Stefen flew, "Information Dashboard Design: Displaying Data for At-A-Glance Monitoring", Analytics Press, 2013.

E-Resources:

1. https://archive.nptel.ac.in/courses/110/107/110107157/

Course: PROGRAMMING IN JAVA			
Code: MBD432			
TEACHING	EXAMINATION SCHEME:	CREDITS	
<u>SCHEME:</u>			
Theory: 2	Internal Assessment: 40 Marks	3	
Tutorial: 0	CIA-I: 20 Marks (Unit I & II)		
Practical: 1 (2 Hours)	CIA-II: 20 Marks (Written Exams/ Quizzes /Assignment		
, , , , , , , , , , , , , , , , , , ,	/Presentations/ Viva-Voce)		
	End Semester Examination: 60 Marks (Unit I- IV)		
	•	•	
Course Prerequisites: No			
Course Objectives: To un	derstand the basic concepts of Java Programming.		
Course Outcomes: After	completing the course, the student can		
• Understand the ba	asic concepts of Java Programming.		
 Acquire object or 	iented skills in Java		
• understand the co	ncepts of inheritance and polymorphism		
• learn how to hand	lle program exceptions		

Course Co	ontent:	
Unit-I	Introduction to Java, Overview and Characteristics of Java, JVM, data types, primitive variables, arrays, operators, control statements, input, output, and main method.	7T + 4P (15 hours)
Unit-II	Object Oriented Programming concepts: Encapsulation and abstraction, designing classes, objects, instance variables and methods, class modifiers.	8T + 4P (16 hours)
Unit-III	Inheritance: types of inheritance, abstract classes, overloading, and overriding. working with packages and interfaces Polymorphism: overloading and overriding.	8T + 4P (16 hours)
Unit-IV	Constructors, use of this and super, garbage collection, static methods and variables, wrapper classes, Math and String, Exception Handling & applications: exception types, nested try-catch, throw, throws and finally statements. Multi Thread Programming: thread creation, synchronization and priorities. Input-output and file operations: Java.io, Object serialization and deserialization. Java Collections API: Arraylist, Set, list, Map, Hashtable, Comparator and comparable Database connectivity, Java Packages, creating a jar file	7T + 3P (13 hours)
 Text Book: 1. E. Balagurusamy, "Programming with Java", McGraw Hill, 6th Edition, 2019. 2. James Gosling, Bill Joy, Guy L. Steele Jr, Gilad Bracha and Alex Buckley, "The Java Language Specification", Addison-Wesley, 7th Edition, 2013. Reference Books: 		
1. H E-Resourc 1. <u>h</u> t	terbert Schildt, "Java-A Beginner's Guide", McGraw Hill, 8 th Edition, 2020. c es: https://nptel.ac.in/courses/106105191	

Course: LINUX PROGRAMMING Code: MBD433			
TEACHING SCHEME:	EXAMINATION SCHEME:	<u>CREDITS</u> <u>ALLOTED</u>	
Theory: 1	Internal Assessment: 40 Marks	3	
Tutorial: 0	CIA-I: 20 Marks (Unit I & II)		
Practical: 2 (4 Hours)	CIA-II: 20 Marks (Written Exams/ Quizzes /Assignment		
	/Presentations/ Viva-Voce)		
	End Semester Examination: 60 Marks (Unit I- IV)		
Course Prerequisites: No			
Course Objectives: To develop the knowledge of Linux Operating System and make effective use of Linux utilities, shell scripts, file utilities, and process utilities.			

Course O	utcomes: After completing the course, the student shall be able to:			
 get introduced to basic Linux operating system commands 				
• w	rite shell scripts to solve problems			
• u	nderstand the file management system calls			
• de	evelop the skills required for process management, and signal management.			
Course Co	ontent:			
Unit-I	Introduction to Linux: What is Linux Operating systems, History of Linux, Linux	4T + 8P		
	vs. other OS, Architecture, Features, and Installation. Linux commands: printf, man,	(20 hours)		
	PATH, echo, passwd, who, uname, script, date, cp, rm, ls, mv, wc, more, cat, wc, lp,			
	od, file handling utilities, security by file permissions, disk utilities, process utilities,			
	df, du, unlink, find, mount, umount, unmask, ps, w. Text Processing utilities and			
	backup utilities, head, tail, uniq, nl, sort, grep, fgrep, egrep, join, paste, cut, pg, cmp,			
	comm, diff, awk, tr, cpio.			
Unit-II	Shell Scripting: Introduction to shells, Bourne Again SHell (BASH), standard	3T + 7P		
	streams, writing and executing the shell scripts, Shell variables, Shell commands,	(17 hours)		
	command substitution, arithmetic in shell, control structures.	, ,		
Unit-III	Files and Directories, Introduction to Files and directories, File Structures, File	4T + 7P		
	management System Calls- create, close, open, close, write, read, dup2, lseek, stat,	(18 hours)		
	lstat, fstat, chown, lchown, fchown, chmod, fchmod, link, unlink, symlink, cat,	, , , , , , , , , , , , , , , , , , ,		
	mkdir, opendir rmdir, chdir, readdir, closedir, unmask, getcwd, rewin functions			
Unit-IV	Process and Signals. Introduction to Process. environment variables - environ.	4T + 8P		
	geteny, seteny, process creation, process termination, thread and process, parent and	(20 hours)		
	child process, zombie process, orphan process, system calls - fork, vfrok, wait, exit,			
	waitpid, exec. Introduction to signals, signal generation, signal functions - kill.			
	alarm, pause, sleep, raise, abort, reliable and unreliable signals.			
Text Book	:			
1 S	umitabha Das, "UNIX – Concepts and Applications" Tata McGraw Hill 4 th Edition 20	06		
2. R	obert Love. "Linux System Programming". O'Reilly, 2 nd Edition, 2013.			
	······;;···; - ···;			
Referenc	e Books:			
1 B	ehrouz A Forouzan and Richard F Gilberg "Unix and Shell Programming" Cengage	e Learning 1 st		
E	dition 2014	, 1 0		
2 Richard Petersen "The Complete Reference LINUX" McGraw Hill 6 th Edition 2008				
	r , ,			
E-Resourc	ces:			

1. <u>https://nptel.ac.in/courses/117106113</u>

LEVEL-5

Semester-III: M.Sc. CS (BDA)

Course: ENABLING TECHNOLOGIES FOR DATA SCIENCE Code: MBD502			
<u>TEACHING</u> SCHEME:	EXAMINATION SCHEME:	<u>CREDITS</u>	

Theory 3		Internal Assassment: 10 Marks	1
Tutorial ()	CIA_I: 20 Marks (Unit I & II)	7
Drastiaal	1 (7 Hours)	CIA-I. 20 Marks (Unit I & II) CIA II: 20 Marks (Written Example Quizzas /Assignment	
Fractical:	1 (2 Hours)	(Dresentational Visco)	
		/Presentations/ viva-voce)	
		End Semester Examination: 60 Marks (Unit I- IV)	
		End Schlester Examination: of Marks (Onit 1-17)	
Course Pr	erequisites: No		
Course O Hadoop, Pi	bjectives: To d	levelop fundamental understanding of the Technologies of Data Scie	nce including
Course Or	itcomes: After of	completing the course, the student can	
• II	nderstand Big d	ata and its analytics in the real world	
• W	ork on Hadoon	and the allocy feel fit file fear world	
	evelon annlicati	ons in Hadoon	
	evelop application	ons in Hadoop.	
Course Co	ontent:		
Unit-I	Big Data and I	Hadoop: Hadoop architecture, versioning, single node and multinode	12T + 3 P
	Hadoop, Hado	op commands, Hadoop daemons.	(18 hours)
Unit-II	Man Reduce	Framework developing Map reduce program Map reduce programs	10T + 4P
	in local and ps	eudo-distributed mode, illustrations.	(18 hours)
Unit-III	Hive: Installati	on data types and illustrations. Spark and NoSOL	11T + 4P
	inve. mound	ion, auta cypes, and mastalans, spank and mosque.	(19 hours)
Unit-IV	Sqoop: Installa	tion, importing, and exporting data, commands, and illustrations.	12 T + 4 P
	Pig: Installatio	n, commands, illustration.	(20 hours)
Text Book	•		. ,
1. C	huck Lam. "Ha	doop in Action". Dreamtech Press, 2020.	
2 To	om White "Had	oop. The definitive guide" O'Reilly 3 rd Edition 2009	
2. Tom white, The dominity galace, Strong, 5 Danion, 2009.			
Reference Books:			
1 Jimmy Lin and Chris Dyer "Data Intensive Text Processing with Man Reduce" Morgan and Claynool			
Publishers 2010			
E-Resources:			
1 ht	tps://archive.nnt	el.ac.in/courses/106/104/106104189/	
1. 11			

Course: DATA MINING		
Code. MIDD303		
TEACHING	EXAMINATION SCHEME:	<u>CREDITS</u>
SCHEME:		ALLOTED
Theory: 2	Internal Assessment: 40 Marks	4
Tutorial: 0	CIA-I: 20 Marks (Unit I & II)	
Practical: 2 (4 Hours)	CIA-II: 20 Marks (Written Exams/ Ouizzes /Assignment	
Tractical. 2 (Triburs)	/Presentations/ Viva-Voce)	
	End Semester Examination: 60 Marks (Unit I- IV)	

Course Pr	rerequisites: No	
Course O	bjectives: To equip learners with the essential knowledge and skills needed to effect	ctively extract
meaningfu	l insights from large datasets using various data mining techniques and algorithms in	order to make
informed of	lecisions and solve real-world problems.	
Course O	utcomes: After completing the course, the student shall be able to:	
• 0	nderstand the concept of data processing and visualization.	
• 0	nderstand the concept of association rule mining.	
• L	earn the concept of data clustering and outlier analysis.	
	earn the concept of web mining and text mining.	
Course Co		07 70
Unit-1	Data Mining: Introduction, Techniques, Issues and challenges, applications, Data preprocessing Knowledge representation. Measure of similarity & dissimilarity	81 + /P
	Data Warehouses: Differences between Operational Database Systems and Data	(22 11001 8)
	Warehouses Data Warehouse Models Extraction Transformation and Loading	
	Data Cube Stars Snowflakes and Fact Constellations OLAP Operations	
	Exploring Data: Visualization, OLAP & Multidimensional Data Analysis.	
Unit-II	Association Rule Mining: Introduction, Frequent Itemsets, Closed Itemsets, and	7T + 8P
	Association Rules Methods to discover association rules, Association rules with	(23 hours)
	item constraints.	
	Association analysis-Advanced Concepts: Handling Categorical and Continuous	
	attributes. Handling a concept Hierarchy, Sequential patterns, subgraph Patterns,	
	Infrequent patterns.	
Unit-III	Cluster analysis: Introduction, clustering paradigms, Similarity and distance,	7T + 8P
	Density, Characteristics of clustering algorithms, Center based clustering	(23 hours)
	techniques, Hierarchical clustering, Density based clustering, other clustering	
	Advanced Clustering Techniques: Drebabilistic Model Deced Clustering, Clustering	
	High-Dimensional Data, Clustering Granh and Network Data, Clustering with	
	Constraints	
Unit-IV	Outlier Analysis: Introduction Outlier Detection Methods Statistical Approaches	8T + 7P
Cint IV	Proximity-Based Approaches, Mining Contextual and Collective Outliers.	(22 hours)
	Advanced techniques: Web mining - Introduction, Web content mining, Web	()
	structure mining, Web usage mining; Text mining- Unstructured text, Episode rule	
	discovery from text, Text clustering; Temporal data mining - Temporal association	
	rules, Sequence mining, Episode discovery, time series analysis; Spatial data mining	
	- Spatial mining tasks, Spatial clustering, Spatial trends.	
Text Book		
1. P.	N. Tan, M. Steinbach and V. Kumar, "Introduction to Data Mining", Pearson Educa	tion India, 4 th
E	dition, 2016.	
2. J.	Han, M. Kamber and J. Pei, "Data Mining Concepts and Techniques", Morgan H	Kaufmann, 3 rd
E	dition, 2012.	
Reference	e Books:	
1. M. Kantardzic, "Data mining: Concepts, Models, Methods, and Algorithms", John Wiley & Sons, 1 st		
E	dition, 2011.	
E-Resour		
1. <u>h</u>	itps://archive.nptel.ac.in/courses/106/105/106105174/	

Course: TIME SERIES AND FORECASTING Code: MBD504			
<u>TEACHING</u> <u>SCHEME:</u>	EXAMINATION SCHEME:	CREDITS ALLOTED:	

Theory: 2		Internal Assessment: 40 Marks	3	
Practical:	1 (2	CIA-II: 20 Marks (Written Exams/ Quizzes /Assignment		
Hours)	,	/Presentations/ Viva-Voce)		
		End Semester Examination: 60 Marks (Unit I- IV)		
	• •.	N		
Course Pr	erequisites	: No To develop the large ladge of time series with different structures, seesand	ites and assolibed	
irregularity	jecuves:	To develop the knowledge of time series with different structures, seasonal	ity, and cyclical	
Course Oi	itcomes: A	fter completing the course, the student shall be able to:		
• Ez	xplain time	series with different structures.		
• Ez	xplain trenc	d, seasonality, cyclical irregularity.		
• • •	onstruct and	d evaluate time series models.		
	nderstand t	ne concept of multivariate time series.		
Unit-I	Basics o	f Time series: A model Building strategy Time series and Stochastic	7T + 3 P	
	process,	stationarity. Auto correlation, meaning and definition – causes of auto	(13 hours)	
	correlation - consequence of autocorrelation – test for auto – correlation. Study of			
	Time Series model and their properties using correlogram, ACF and PACF. Yule			
	walker ed	quations		
Unit-II	Time Series Models: White noise Process, Random walk, MA, AR, ARMA and $8T + 4P$			
	ANIMA models, box- jenkins s internoutly multiply $AK(1)$, $AK(2)$, $NA(1)$, (10 nours) MA(2) and $ARIMA(11)$ process. Unit root hypothesis. Co-integration. Dicky			
	Fuller tes	st unit root test, augmented Dickey – Fuller test.		
Unit-III	Non-line	ar time series models, ARCH and GARCH Process, order identification,	7T + 4 P	
	estimatio	on and diagnostic tests and forecasting. Study of ARCH (1) properties.	(15 hours)	
	GARCH	(Conception only) process for modelling volatility.	077 (7	
Unit-IV	Multivar	tate Linear Time series: Introduction, Cross covariance and correlation	8T + 4P	
	Stationar	testing of zero cross correlation and model representation. Basic idea of a vector Autoregressive Time Series with order one: Model Structure	(10 nours)	
	Granger	Causality, stationarity condition. Estimation, Model checking.		
Text Book	s:			
1. G	. E. P. Box	and G. M. Jenkins, "Time Series Analysis: Forecasting and Control", H	Iolden day, San	
Fi	ancisco, 1 st	^t Edition, 1976.		
2. R	uey S. Tsay	y, "Multivariate Time Series Analysis: with R and Financial Application",	Wiley & Sons,	
Reference	Books	014.		
1 C	Chatfield	"Analysis of Time Series An Introduction" CRC Press 1st Edition 2003		
2. R	uey S. Tsav	"Analysis of Financial Time Series", Wiley & Sons, 2 nd Edition, 2005.		
3. W	3. W.A. Fuller, "Introduction to Statistical Time Series", Wiley Series in Probability and Statistics, 1st			
E	dition, 1996	6.		
E-Resourc	es:	. / //02106122		
I. <u>ht</u>	tps://nptel.a	ac.in/courses/103106123		

1	https://mptol.og.in/oourgos/102106122
1.	$\frac{11108.7}{100123}$

Course: OPTIMIZATION TECHNIQUES Code: MBD505			
TEACHING SCHEME:	EXAMINATION SCHEME:	<u>CREDITS</u> <u>ALLOTED:</u>	
Theory: 2 Tutorial: 0	Internal Assessment: 40 Marks CIA-I: 20 Marks (Unit I & II)	3	

Practical:	1 (2 Hours)	CIA-II: 20 Marks (Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce)	
		End Semester Examination: 60 Marks (Unit I- IV)	
		•	
Course Pro	erequisites: No	1 .1 1 1 1 01	•.1
Course Ob	jectives: 10 de	velop the knowledge of linear programming and designing efficient alg	gorithms.
	derstand the lir	completing the course, the student shall be able to:	
• Di	esign and analyz	ze algorithms for various combinatorial optimization problems.	
• De	evelop a compre	ehensive understanding of optimization theory	
• U1	nderstand queue	ing models and its applications in data analytics	
Course Co	ntent:		
Unit-I	Linear Progra Duality, Dua Assignment Pr	amming, Convex Set, Simplex Method, Revised Simplex method, al Simplex, Interior Point Method, Transportation problem, roblem, Integer Linear Programming Problem.	7T + 4 P (15 hours)
Unit-II	Dynamic Pro Max-Flow and Optimization programming and minima	ogramming, Network Flow Problem: Shortest Path problem, d Min-cut problem, Convex function, Concave function, Non-Linear Problem: Lagrange Multipliers, KKT Conditions, Quadratic Problems, Wolfe method, Multivariable functions and their maxima	8T + 4 P (16 hours)
Unit-III	Unconstrained descent metho Function Meth	d Optimization, Local & global Optimum, Direct Search, Steepest od, Conjugate Gradient method, Penalty Function Method, Barrier hod.	7T + 4 P (15 hours)
Unit-IV	Queueing Mo queues, Non- Queueing Syst	odel: M/M/1, M/M/C, etc., Steady-state solutions of Markovian -Markovian Queues. Queueing Decision models, Simulation of tems.	8T + 3 P (14 hours)
Text Book:			
 Bemhard Korte and Jens Vygen. "Combinatorial Optimization-Theory and Algorithms", 2019. Suresh Chandra, Jayadeva and Aparna Mehra, "Numerical Optimization with Applications", Narosa Publishing House, 2009. Kishor S. Trivedi, "Probability and Statistics with Reliability, Queueing and Computer Science Applications", John Wiley, 2nd Edition, 2001. 			
Reference 1. W W 2. Jo	Books: J. Cook, W.H. iley-Interscienc hn Riordan. "In	Cunningham, W.R. Pulleyblank and A. Schrijver, "Combinatorial e, 1 st Edition, 2011. troduction to Combinatorial Analysis", Dover Publications Inc., 1 st Ed	Optimization", ition, 2002.

E-Resources:

1. https://nptel.ac.in/courses/111105039

LEVEL-5: ELECTIVE COURSES

Course: SOFTWARE ENGINEERING

Code: MBI	0531			
TEACHIN	<u>G</u>	EXAMINATION SCHEME:	<u>CREDITS</u>	
SCHEME:			ALLOTED :	
Theory: 3		Internal Assessment: 40 Marks	3	
Tutorial: 0		CIA-I: 20 Marks (Unit I & II)		
Practical: 0		CIA-II: 20 Marks (Written Exams/ Quizzes /Assignment		
		/Presentations/ Viva-Voce)		
		End Semester Examination: 60 Marks (Unit I- IV)		
Course Pre	requisites: No			
Course Ob	jectives: To dev	velop the knowledge of various phase of software lifecycle, choosing p	process model.	
Course Out	tcomes: After c	completing the course, the student shall be able to:		
• De	compose the gi	iven project in various phases of a lifecycle.		
• Ch	oose an approp	riate process model depending on the user requirements.		
• Per	rform various li	ife cycle activities like Analysis, Design, Implementation, Testing and	Maintenance.	
• Kn	ow various pro	cesses used in all the phases of the product.		
• <u>Ap</u>	ply the knowle	dge, techniques, and skills in the development of a software product.		
Course Con	ntent:			
Unit-I	Software Dev	elopment Life Cycle: Software Process, Software Development Life	(10 Hours)	
	Cycle Model	s, Software Requirement Engineering: Requirement Engineering		
	Process			
	Function-orie	nted Design: Introduction to Structured Analysis, Data Flow		
	Diagram, Pro	ocess Specification, Entity Relationship (ER) Model, Structured		
	Design Metho	odologies, Design Metrics		
Unit-II	Object Orien	nted Concepts & Principles: Key Concepts, Relationships: Is-A	(12 Hours)	
	Relationship,	HasA Relationship, Uses-A Relationship; Modelling Techniques:		
	Booch OO D	esign Model, Rumbaugh's Object Modelling Technique, Jacobson's		
	model, The	Unified Approach to Modelling, Unified Modelling Language		
	(UML). Obje	ect Oriented Analysis & Design: UseCase Modelling, Use-Case		
	Realization, C	Class Classification Approaches: Noun Phrase Approach, CRC Card		
	Approach, U	se-case Driven Approach, Identification of Classes, Relationship,		
	Attributes and	d Method. System Context and Architectural Design, Principles of		
	Class Design,	Types of Design Classes		
Unit-III	UML 2.0 diag	grams: Structure diagrams, Behavior diagrams.	(11 Hours)	
	Software cod	ling and Testing: Coding standards and guidelines, Code review		
	techniques, T	esting Fundamentals, Verification & Validation, Black Box Testing,		
	White Box 7	Festing, Unit Testing, Integration Testing, System Testing, Object		
ļ	Oriented Syst	em Testing.		
Unit-IV	Emerging Tr	ends: Architecture styles, Service Oriented Architecture (SOA),	(12 Hours)	
	CORBA, CO	OM/DCOM; Web Engineering: General Web Characteristics,		
	Emergence of	of Web Engineering, Web Engineering Process, Web Design		
	Principles, W	eb Metrics		
Text Book:	Text Book:			
1. Ro	ger S. Pressma	an, "Software Engineering: A Practitioner's Approach", McGraw H	III, 6 ^m Edition,	
200	U5.			
2. Ra	Jib Mall, "Fund	amentals of Software Engineering", PHI, 3rd Edition, 2009.		
Reference	Books:			
1. Gra	ady Booch, Ja	mes Rambaugh and Ivar Jacobson, "Unified Modeling Language	User's Guide",	
Pearson, 2 nd Edition, 2002.				
E-Resource	es:	10/10/10/102		
1. <u>htt</u>	ps://nptel.ac.in/	courses/100105182		

Course: N Code: ME	ATURAL LAN BD532	GUAGE PROCESSING	
TEACHII SCHEME	<u>NG</u> <u>::</u>	EXAMINATION SCHEME:	CREDITS ALLOTED
Theory: 2 Tutorial: 0 Practical: 1 (2 Hours)		Internal Assessment: 40 Marks CIA-I: 20 Marks (Unit I & II) CIA-II: 20 Marks (Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce) End Semester Examination: 60 Marks (Unit I- IV)	3
Course Pr Course O models for	erequisites: Kno bjectives: To eq text classification	owledge of data structures and machine learning. up the students with theoretical and practical knowledge of NLP requires one information extraction, and chatbots.	red to develop
Course O • U • A • E • U	utcomes: After of Inderstand the ro Apply CNN and I Attract information Inderstand the application	completing the course, the student shall be able to: admap to NLP STM for Text Classification on from the text and develop Chatbots oplications and advancements in NLP	
Course Co	ontent:		
Unit-I	Basic Concep Approaches to Pipeline, Vecto of Words, Bag	ts: Introduction to NLP, Language, Building blocks of Language, o NLP (heuristic-based, machine learning, and deep learning), NLP or Space Models, Vectorization Approaches (One-Hot encoding, Bag of N-Grams, TF-IDF)	7T + 4P (15 hours)
Unit-II	Text Classifica embeddings, Pre-Trained I Learning with	tion: Word Embedding, Subword Embedding and fastText, document CNN for Text Classification, LSTM for Text Classification, Language Models, Interpreting Text Classification with LIME, Less data, Adapting to New Domains	8T + 4 P (16 hours)
Unit-III	Information E: Key phrase Ex Linking, Relati	xtraction from Text: IE Introduction, Applications, IE Task Pipeline, xtraction, Named Entity Recognition, Named Entity Disambiguation ionship Extraction	7T + 4 P (15 hours)
Unit-IV	Applications at Chatbots: Dial Rasa NLU Cha BERT, GPT-4, Large Languag Education, Con	nd Advancements log Systems, Goal Oriented Dialog, Components of Dialog Systems, atbots; Recent Advancements in NLP: Transformer-based Models like Multimodal NLP; Few-Shot and Zero-shot NLP; Multimodal NLP, ge Models; Applications of NLP: Language Translation, Healthcare, intent Generation, etc.	8T + 3 P (14 hours)
Text Book 1. Y P 2. S 1' 1'	tioav Goldberg, " ublishers, 1 st Edi teven Bird, Ewa st Edition, 2009.	Neural Network Methods for Natural Language Processing", Morgation, 2017. In Klein, and Edward Loper, "Natural Language Processing with Pyth	n & Claypool on", O'Reilly,
Reference 1. D E 2. R T	e Books: Daniel Jurafsky a dition, 2013. icardo Baeza – V echnology behin	and James H. Martin, "Speech and Language Processing", Pearson Pu Yates, and Berthier Ribeiro – Neto, "Modern Information Retrieval: The d Search", ACM Press Books, 2 nd Edition, 2011.	blications, 2 nd e concepts and

E-Resources:

Course: CLOUD COMPUTING Code: MBD533			
TEACHING	<u>SCHEME:</u>	EXAMINATION SCHEME:	<u>CREDITS</u> <u>ALLOTED:</u>
Theory: 2 Tutorial: 0 Practical: 1 (2 Hours)		Internal Assessment: 40 Marks CIA-I: 20 Marks (Unit I & II) CIA-II: 20 Marks (Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce) End Semester Examination: 60 Marks (Unit I- IV)	3
Course Objeworldwide.	ctives: To devo	elop knowledge of various service models, changing infrast	ructure landscape
Course Outco Gain How	omes: After con knowledge of v cloud systems a	npleting the course, the student shall be able to: rarious service models. are changing the infrastructure landscape worldwide.	
Course Conte	ent:		
Unit-I	Unit-I Overview of Computing Paradigm, Recent trends in Computing Grid Computing, Cluster Computing, Distributed Computing, Utility Computing, Cloud Computing Evolution of Cloud Computing Business driver for adopting Cloud Computing.		7T + 4 P (15 hours)
	Introduction to Cloud Computing. Cloud Computing (NIST Model) Introduction to Cloud Computing, History of Cloud Computing, Cloud service providers. Properties, Characteristics & Disadvantages Pros and Cons of Cloud Computing.		
Unit-II	Cloud Compu architecture (Cloud Comp protocols used	uting Architecture, Comparison with traditional computing client/server), Services provided at various levels, How uting Works, Role of Networks in Cloud computing, d, Role of Web services	8T + 4 P (16 hours)

Unit-III	Service Models (XaaS), Infrastructure as a Service (IaaS), Platform as a Service(PaaS), Software as a Service(SaaS), Deployment Models, Public cloud, Private cloud, Hybrid cloud Community cloud, Infrastructure as a Service(IaaS). Introduction to virtualization, Different approaches to virtualization, Hypervisors, Machine Image, Virtual Machine (VM).	7T + 4 P (15 hours)
Unit-IV	Examples, Amazon EC2, Renting, EC2 Compute Unit, Platform and Storage, pricing, customers Eucalyptus, Platform as a Service (PaaS), Introduction to PaaS, What is PaaS, Service Oriented Architecture (SOA). Examples: Google App Engine, Microsoft Azure, SalesForce.com's Force.com platform Software as a Service (PaaS): Introduction to SaaS, Web services, Web 2.0, Web OS, Case Study on SaaS Cloud Security. Case Study on Open Source & Commercial Clouds.	8T + 3 P (14 hours)

Text Book:

- 1. Erl Thomas, Puttini Ricardo and Mahmood Zaigham, "Cloud Computing: Concepts, Technology and Architecture", Pearson Education India, 2014.
- 2. Barrie Sosinsky, "Cloud Computing Bible", Wiley, 1st Edition, 2010.

Reference Book:

- 1. Barrie Sosinsky, "Cloud Computing Bible", Wiley-India, 1st Edition, 2010.
- 2. Kamal Kant Hiran, "Cloud Computing: Master The Concepts, Architecture and Applications with Real-World Examples and Case Studies", BPB Publications, 1st Edition, 2019.

E-Resources:

1. <u>https://archive.nptel.ac.in/courses/106/105/106105167/</u>

Course: MULTIVARIATE STATISTICS Code: MBD534			
TEACHING SCHEME:	EXAMINATION SCHEME:	<u>CREDITS</u> <u>ALLOTED:</u>	
Theory: 2 Tutorial: 0 Practical: 1 (2 Hours)	Internal Assessment: 40 Marks CIA-I: 20 Marks (Unit I & II) CIA-II: 20 Marks (Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce) End Semester Examination: 60 Marks (Unit I- IV)	3	

Course Pre-requisites: No

Course Objectives: To develop the knowledge of finding patterns and correlations between several variables simultaneously, analyze complex datasets.

Course Outcomes: After completing the course, the student shall be able to:

- Find patterns and correlations between several variables simultaneously.
- Analyze complex datasets, allowing to gain a deeper understanding of data and how it relates to real-world scenarios.

Course Content:			
Unit-I	Review of Multivariate Normal Distribution (MVND) and related distributional results. Random sampling from MVND, Unbiased and maximum likelihood estimators of parameters of MVND, their sampling distributions, independence. Correlation matrix and its MLE. Partial and multiple correlation coefficients, their maximum likelihood estimators (MLE), Wishart distribution and its properties (only statement).	7T + 4 P (15 hours)	
Unit-II	Hotelling's T2 and its applications. Hotelling's T2 statistic as a generalization of square of Student's statistic. Distance between two populations, Mahalnobis D2 statistic and its relation with Hotelling's T2 statistic.	8T + 4 P (16 hours)	
Unit-III	Classification problem – two populations, two multivariate normal populations, several populations; Discriminant analysis - Fischer's method, Logistic Regression Principle component analysis – Introduction, population principal components, summarizing sample variation by principal components, graphing principal components.	7T + 4 P (15 hours)	
Unit-IV	Canonical correlation – Introduction, canonical variates & correlations, interpreting canonical variables, Factor Analysis – Introduction, Orthogonal Factor model, Methods of Estimation, Factor Rotation & Scores, and Perspective & Strategy for Factor Analysis Cluster Analysis – Introduction, similarity measures, hierarchical & non-hierarchical clustering methods, multidimensional scaling, correspondence analysis	8T + 3 P (14 hours)	

Text Book:

- 1. A. M. Kshirsagar, "Multivariate Analysis", Maral-Dekker, 1972.
- 2. D.F. Morrison, "Multivariate Statistical Methods", McGraw-Hill, 1976.

Reference Books:

- 1. Johnosn, R.A. and Wichern. D.W, "Applied Multivariate Analysis", Prentice –Hall, 5th Edition, 2002.
- Anderson T. W., "An Introduction to Multivariate Statistical Analysis", John Wiely, 2nd Edition, 1984.

E-Resources:

1. https://nptel.ac.in/courses/111105091

Course: BIOINFORMATICS Code: MBD535			
TEACHING SCHEME:	EXAMINATION SCHEME:	<u>CREDITS</u> <u>ALLOTED:</u>	
Theory: 2 Tutorial: 0 Practical: 1 (2 Hours)	Internal Assessment: 40 Marks CIA-I: 20 Marks (Unit I & II) CIA-II: 20 Marks (Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce) End Semester Examination: 60 Marks (Unit I- IV)	3	

Course Prerequisites: No

Course Objectives: To develop the knowledge of basic principles and concept of biology, computer science and mathematics, extract information from large databases and use this information in computer modeling.

Course Outcomes: After completing the course, the student shall be able to:

- Knowledge and awareness of the basic principles and concepts of biology, computer science and mathematics.
- Existing software effectively to extract information from large databases and to use this information in computer modeling.

Course Content:

Unit-I	Sequence Alignment problem & Algorithm, Pairwise & Multiple sequence Alignment, Advance Alignment Method.	7T + 4 P (15 hours)
Unit-II	Gibbs Sampling, Population Genomics, Genetic Mapping, Disease Mapping	8T + 4 P (16 hours)
Unit-III	Gene Recognition, Transcriptome & Evolution, Protein Structure, Protein Motifs.	7T + 4 P (15 hours)
Unit-IV	Hidden Markov Models, Lattice Model, Algorithms.	8T + 3 P (14 hours)

Text Book:

- 1. Arthur Lesk, "Introduction to Bioinformatics", Oxford University Press, 4th Edition, 2014.
- 2. Edward H. Shortliffe and James J. Cimino, "Biomedical Informatics: Computer applications in Health Care and Biomedicince", Springer, 5th Edition, 2021.

Reference Book:

- 1. C Setubal and J Meidanis, "Introduction Computational Molecular Biology", PWS Publishing Boston, 1997.
- 2. Venkatarajan Subramanian Mathura and Pandjassarame Kangueane, "Bioinformatics: A Concept-Based Introduction", Springer, 1st Edition, 2010.

E-Resources

1. https://nptel.ac.in/courses/102106065

Course: INFORMATION RETRIEVAL			
Code: MBD536			
TEACHING SCHEME:	EXAMINATION SCHEME:	<u>CREDITS</u>	
Theory: 2	Internal Assessment: 40 Marks	3	
Tutorial: A	CIA-I: 20 Marks (Unit I & II)		
	CIA-II: 20 Marks (Written Exams/ Quizzes /Assignment		
Practical: 1 (2 Hours)	/Presentations/ Viva-Voce)		
	End Semester Examination: 60 Marks (Unit I- IV)		
Course Prerequisites: No			

Course Objectives: To develop proficiency in techniques and principles of information retrieval for efficient access, evaluation, and utilization of diverse data sources

Course Outcomes: After completing the course, the student will be able to

- Apply information retrieval principles to retrieve the relevant records in large collections of data.
- Describe the techniques of indexing in retrieval i.e. Boolean retrieval and rank based retrieval.
- Evaluate the information retrieval system.
- Describe web characteristics, how indexing & crawling is managed in a web server.

Course Co	ontent:		
Unit-I	 Introduction to Information Retrieval: IR Concepts, Boolean Retrievals, Invert Index, Processing Boolean Queries. The Term Vocabulary and Postings Lists: Document Delineation and Charac 		
	Sequence Decoding, Determining the Vocabulary of Terms.		
Unit-II	Dictionaries and Tolerant Retrieval: Search Structures for Dictionaries, Wildcard Queries, Spelling Correction, Phonetic Correction. Index Construction: Hardware Basics Blocked Sort-Based Indexing. Scoring, Term Weighting.	8T + 4 P (16 hours)	
	Vector Space Model: Parametric and Zone Indexes, Term Frequency and Weighting, The Vector Space Model for Scoring.		
Unit-III	Evaluation in Information Retrieval: Information Retrieval System Evaluation, Standard Test Collections, Evaluation of Unranked Retrieval Sets, Evaluation of Ranked Retrieval Results. Text Classification & Naïve Bayes: The Bernoulli model, Properties of Naïve Bayes, Feature Selection, Evaluation of text classification.	7T + 4 P (15 hours)	
Unit-IV	Web Search Basics: Web Characteristics, Advertising as the Economic Model, The Search User Experience, Index Size and Estimation, Near-Duplicates and Shingling. Web Crawling and Indexes: Overview, Crawling, Distributing Indexes, Connectivity Servers. Link Analysis: The Web as a Graph, Page Rank, Hubs and Authorities.	8T + 3 P (14 hours)	
Text Book	<u> </u>		

- 1. C. Manning, P. Raghavan and H. Schütze, "Introduction to Information Retrieval", Cambridge University Press, 2011.
- 2. R. B. Yate and B. R.Neto, "Modern Information Retrieval", Addison Wesley, 2nd Edition, 2012

Reference Book:

1. S. Butcher and C.L.A. Clarke, "Information Retrieval – Implementing and Evaluating Search Engines" The MIT Press, 1st Edition, 2016.

Course: MODELLING IN OPERATIONS MANAGEMENT Code: MBD537			
TEACHING SCHEME:	EXAMINATION SCHEME:	<u>CREDITS</u> <u>ALLOTED:</u>	
Theory: 2	Internal Assessment: 40 Marks	3	
Tutorial: 0	CIA-I: 20 Marks (Unit I & II)		
Practical: 1 (2 Hours)	CIA-II: 20 Marks (Written Exams/ Quizzes /Assignment		

	/Presentations/ Viva-Voce)			
	End Semester Examination: 60 Marks (Unit I- IV)			
Course P	rerequisites: No			
operation	Jbjectives: To develop the knowledge of input-output framework, roles and resp	onsibilities of		
Course C	Dutcomes: After completing the course, the student shall be able to:			
• 1	Understand the input-process-output framework, the extensions of it, and apply the	em to a wide		
l I	ange of operations.			
• 1	Examine the types of transformation processes occurring within operations.			
• 1	Define the roles and responsibilities of operations managers and the challenges they far	ce.		
• I	Reflect on your own operations management responsibilities, if applicable.			
• 1	Understand the content of an operations strategy and the decisions involved.			
Course C	ontent:			
Unit-I	Classify various operations management problems, Identify the nature of the	7T + 4P		
	information needed to be able to address the problem, translate these problems	(15 hours)		
	into the appropriate statistical and/or mathematical framework and interpret the			
	results of the models in a verbal manner of the case study: Venture Analysis,			
Unit-II	DAILY ANALYLICS t II Classify various operations management problems Identify the nature of the $\mathbf{ST} + \mathbf{AP}$			
	information needed to be able to address the problem translate these problems	(16 hours)		
	into the appropriate statistical and/or mathematical framework and interpret the			
	results of the models in a verbal manner of the case study: Marketing analytics			
Unit-III	Classify various operations management problems, Identify the nature of the	7T + 4 P		
	information needed to be able to address the problem, translate these problems	(15 hours)		
	into the appropriate statistical and/or mathematical framework and interpret the			
	results of the models in a verbal manner of the case study: Healthcare analytics,			
	Retail analytics			
Unit-IV	Classify various operations management problems, Identify the nature of the	8T + 3 P		
	information needed to be able to address the problem, translate these problems	(14 hours)		
	nut the appropriate statistical and/of mathematical framework and interpret the results of the models in a verbal manner of the case study: Supply chain analytics			
Text Roo	results of the models in a verbar manner of the case study. Supply chain analytics			
1 9	S Anil Kumar and N Suresh "Operations Management" New Age Internatio	onal (P) Ltd		
	Publishers 2009	, , , , , , , , , , , , , , , , , , ,		
	alit Kumar Awasthi Sushendra Kumar Misra Dilbaoh Panchal and M	Aohit Tvagi		
2. 1	"Onerations Management and Data Analytics Modelling" CRC Press 1 st Edition 2021			
	operations management and Data marytes moderning, effectives, i Data	011, 2021.		
Reference	ze Books:			
1 1	William I Stevenson "Operations Management Models: A Droblem Solving	Approach"		
I. 1.	winnam J. Sievenson, Operations widnagement woulds. A Problem-Solving McGraw-Hill Higher Education 2002	s Approach ,		
	Handfield and Nichols "Introduction to Supply Chain Management" Prentice Hall I	ndia Learning		
	Private Limited, 1 st Edition, 2015.	Line Louining		

Private Limited, 1st Edition, 2015.

Course: DATA PRIVACY and SECURITY			
Code: MBD538			
TEACHING SCHEME:	EXAMINATION SCHEME:	CREDITS ALLOTED:	

Theory: 2 Tutorial: 0 Practical: 1	l (2 Hours)	Internal Assessment: 40 Marks CIA-I: 20 Marks (Unit I & II) CIA-II: 20 Marks (Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce) End Semester Examination: 60 Marks (Unit I- IV)	3
Course Pre	erequisites: No		
Course Ob	Jectives: 10 edu	cate students on fundamental principles, laws, technologies and best j	practices in data
environmer	its	cenvery sareguard sensitive information and infugate fisks in divers	se teennological
Course Ou Ur En To an	tcomes: After conderstanding of I aderstanding of I abling students equip students d system security	ompleting the course, the student shall be able to: Data Privacy Laws and Regulations to analyze and compare real-world data sharing practices. with comprehensive understanding and practical skills in various fa y	cets of network
Course Co	ntent:		
Unit I	Introduction to access contro specifications, financial, etc.	Data Privacy: Types of privacy attacks, Data linking and profiling, l models, role based access control, privacy policies, their privacy policy languages, privacy in different domains-medical,	7T + 3 P (13 hours)
Unit-II	Mathematical model for comparing real-world data sharing practices, computing privacy and risk measurements. Demographics and Uniqueness. Protection Models-Null-map, k-map, Wrong map. Survey of techniques-Protection models (null-map, k-map, wrong map), Disclosure control, Inferring entity identities, entry specific databases. Computation systems for protecting delimited data-Min Gen, Datafly, Mu-Argus, k-Similar.8 T + 4 P (16 hours)		
Unit-III	Introduction to Security: The OSI Security Architecture, Security Attacks, Services and Mechanisms, Model for Network Security, Number theory, Cryptographic Hash Functions, Digital Signatures, System Security, Symmetric Encryption and Message Confidentiality, Substitution ciphers, Stream ciphers, Public-key cryptography and Message Authentication, Key Distribution and Authentication		
Unit-IV	Security metr Measuring sec management. A Forensics Ima Extraction, and	ics: Design, Data sources, Analysis of security metrics data, curity cost and value, Different context for security process Acquisition and Duplication: Sterilizing Evidence Media, Acquiring ages, Acquiring Live Volatile Data, Data Analysis, Metadata 1 File System Analysis.	7 T + 4 P (15 hours)
Text Book:			
1. Ro Pr 20	onald Leenes, R ivacy: The Age 17.	Rosamunde van Brakel, Serge Gutwirth and De Hert Paul, "Data of Intelligent Machines (Computers, Privacy and Data Protection)", I	Protection and Hart Publishing,
 Milan Petkovic and Willem Jonker, "Security, Privacy, and Trust in Modern Data Management", Springer Science & Business Media, 1st Edition, 2007. 			
 Reference Books: 1. William Stallings, "Cryptography and Network Security: Principles and Practice", 7th Edition, Pearson Education, 2017. 			

E-Resources:

Course: ARTIFICIAL INTELLIGENCE Code: MBD539			
TEACHIN	G SCHEME:	EXAMINATION SCHEME:	CREDITS ALLOTED:
Theory: 2 Tutorial: 0 Practical: 1	1 (2 Hours)	Internal Assessment: 40 Marks CIA-I: 20 Marks (Unit I & II) CIA-II: 20 Marks (Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce) End Semester Examination: 60 Marks (Unit I- IV)	3
Course Pre	erequisites: No		
Course Ol language, fo	bjectives: To of ormalization of	develop the knowledge of intelligent agents, different search tech knowledge, and reasoning.	nniques, prolog
Course Ou Ur Ar Eq Ur	tcomes: After conderstand the co- poply the concept pup with understand the co- nderstand the co-	completing the course, the student shall be able to: incepts of rationality, nature of environment, and structure of agents. Its and methods of different search and problem solving techniques. standing of concepts of knowledge representation and reasoning in unc incepts of reinforcement learning and solve the problems using prolog	ertainty. programming.
Course Co	ntent:		5 75 + 2 D
Unit I	Introduction t AI, Turing T Rationality, S learning agent	o AI and Intelligent Agents: What is AI, Foundations and History of Test, Applications of AI, Agents and Environments, Concept of tructure of Agents (reflex, model-based, goal-based, utility-based, is), Nature of Environments.	7T + 3 P (13 hours)
Unit-II	Problem Solving and Searching: Problem Space and Characteristics, Problem solving Agents, Production Systems, Uninformed Search Strategies- Depth First Search, Breadth First Search, Uniform Cost Search, Iterative Deepening, Heuristic Search Techniques- Best First Search, A* algorithm, AO* algorithm, Hill climbing and its Variations, Simulated Annealing, Genetic Algorithm, Problem in Game playing, Min-max algorithm, Alpha – Beta pruning, Constraint Satisfaction Problem.8 T + 4 P (16 hours)		
Unit-III	Knowledge representation knowledge us Graphs, First Backward Cha truth and de Inference, Der	Representation and Reasoning: Approaches of knowledge and issues, Propositional Logic, Semantic Nets, Representing ing rules, Conceptual Dependencies, Production Rules, Conceptual Order Logic, Inference in first order logic, Unification and lifting, aining, Resolution Principle, different types of uncertainty- degree of gree of belief, Reasoning under uncertainty, Bayes Probabilistic mpster-Shafer theory.	8 T + 4 P (16 hours)
Unit-IV	Reinforcemen passive reinf applications o	t Learning: Introduction to reinforcement learning, active and forcement learning, generalization in reinforcement learning, f reinforcement learning.	7 T + 4 P (15 hours)
	Prolog: Introc Matching in P	luction, Goals, Prolog Terminologies, Variables, Control Structures, rolog, Arithmetic Operators, Backtracking, Cuts, Recursion, Lists,	
Text Book:	Russell and P	Norvig "Artificial Intelligence: A Modern Approach" Pearson Educat	ion 3 rd Edition

2015.

2. Elaine Rich and Kelvin Knight, "Artificial Intelligence", Tata McGraw Hill, 3rd Edition, 2017.

Reference Books:

- 1. Nils J. Nilsson, "Artificial Intelligence: A new Synthesis", Elsevier Publishers, 1st Edition, 2003.
- W.F. Clocksin and C.S. Mellish, "Programming in PROLOG", Springer, 5th edition, 2003.
 Ivan Bratko, "Prolog Programming for Artificial Intelligence", Pearson Education, 4th edition, 2011.

E-Resources: