Central University of Rajasthan School of Mathematics, Statistics & Computational Sciences Department of Mathematics

Details of Revised/New Structure and Syllabus of Int. M.Sc. Mathematics w.e.f. 2023

POs (Programme Outcomes)

Students should be able to:

PO 1. Rigorous knowledge: Having rigorous and thorough knowledge of broad range of pure and applied areas of mathematics.

PO 2. Application of knowledge: Apply the knowledge of mathematics and science to the solution of complex mathematical problems.

PO 3. Problem analysis: Identify, formulate and analyze complex mathematical problems using mathematical principles.

PO 4. Development of solution: Formulate solutions for the complex mathematical problems, process, and its components.

PO 5: Conduct investigation of complex problems: Use research methods including design of experiment, analysis and observation of results to investigate and solve complex problems.

PO 6: Tool and software usages: Create, select and apply appropriate mathematical techniques, resources and software tools including modelling and prediction to complex mathematical models.

PO 7: Environment and sustainability: Understand the role of mathematics and its impact in societal and environmental contexts and demonstrate the knowledge of, and need for sustainable development.

PO 8: Individual and teamwork: Function effectively as an individual and as a member of team.

PO 9: Life-long learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

PO10. Carrier Opportunities: Having opportunity to start career in academics and research institutions.

Mapping from Mission to Programme Outcomes

The mapping is based on marks 1 to 3, where "1" indicates low level matching of mission with programme outcome, "2" indicates medium level matching, and "3" indicate high level matching.

PO/Mission	M 1	M 2	M 3
PO 1	3	2	3
PO 2	2	2	3
PO 3	1	2	2
PO 4	1	2	3
PO 5	2	3	3
PO 6	1	3	3
PO 7	3	1	2
PO 8	3	2	2
PO 9	3	2	2
PO 10	2	3	3

Mapping from Programme Outcomes to Courses

The mapping is based on marks 1 to 3, where "1" indicates low level matching of course outcome with programme outcome, "2" indicates medium level matching, and "3" indicate high level matching.

	PO									
Course/PO	1	2	3	4	5	6	7	8	9	10
MAT101	3	3	2	3	2	1	1	2	2	2
MAT102	3	3	3	3	2	1	1	2	2	2
MAT103	3	3	2	3	2	1	1	2	2	2
MAT104	3	3	3	3	2	1	1	2	2	2
MAT201	3	3	2	3	3	1	2	2	3	2
MAT202	3	3	3	3	3	1	1	2	2	2
MAT301	3	3	2	2	2	1	1	2	3	2
MAT302	3	3	3	3	2	1	1	2	2	2
MAT303	3	2	2	3	2	1	1	2	2	2
MAT304	3	3	2	2	2	1	1	2	2	2
MAT305	3	3	2	2	2	1	1	2	2	2
MAT306	3	3	3	3	2	1	1	2	2	2
MAT382	3	3	3	3	2	2	1	2	2	2
MAT401	3	3	3	3	2	1	1	1	1	2

MAT402	3	3	3	3	2	1	1	1	1	2
MAT403	3	3	3	2	2	1	1	1	1	2
MAT404	3	3	3	3	2	1	1	2	1	2
MAT405	3	3	3	3	2	1	1	2	1	2
MAT406	3	3	3	2	1	1	1	2	1	2
MAT407	3	3	3	3	2	1	1	2	1	2
MAT431	3	3	3	3	2	1	2	2	2	2
MAT432	3	3	3	3	2	1	1	2	2	2
MAT433	3	2	1	1	1	3	1	3	3	2
MAT434	3	2	1	2	2	3	1	3	3	2
MAT435	3	3	3	3	2	2	1	2	2	2
MAT436	3	3	3	3	2	1	1	2	2	2
MAT437	3	3	3	3	3	1	1	2	3	2
MAT438	3	3	3	3	2	1	2	2	3	2
MAT439	3	3	3	3	3	2	1	2	3	2
MAT501	3	3	3	3	1	1	1	2	3	2
MAT502	3	3	1	3	3	3	1	3	3	2
MAT503*										2
MAT504	3	3	2	2	1	2	2	3	3	2
MAT581	3	2	3	3	3	3	3	3	3	2
MAT531	3	3	3	3	2	1	2	2	3	2
MAT532	3	3	3	3	2	1	1	2	2	2
MAT533	3	3	3	3	1	1	1	2	2	2
MAT534	3	3	1	2	2	1	1	2	2	2
MAT535	3	3	3	2	1	1	1	1	2	2
MAT536	3	3	1	2	2	3	3	2	2	2
MAT537	3	3	3	3	3	1	1	2	3	2
MAT538	3	3	3	3	2	2	1	2	2	2
MAT539	3	3	3	3	3	2	1	2	2	2
MAT540	3	3	3	2	2	1	1	2	2	2
MAT541	3	3	2	3	2	3	1	2	3	2
MAT542	3	3	2	3	2	3	1	2	3	2
MAT543	3	3	3	3	2	1	1	2	3	2
MAT544	3	3	3	3	2	2	1	2	2	2
MAT545	3	3	1	2	2	1	2	3	3	2
MAT546	3	3	3	3	3	1	1	2	2	2
MAT547	3	3	3	3	1	1	1	2	2	2
MAT548	3	3	3	3	2	1	1	2	2	2
MAT549	3	3	2	3	2	2	1	2	2	2
MAT550	3	3	3	3	2	1	2	2	2	2
MAT551	3	3	3	3	2	1	1	2	2	2

MAT552	3	3	1	2	3	2	1	2	3	2
MAT553	3	3	3	3	2	1	1	2	2	2
MAT554	3	3	2	2	3	1	1	2	2	2
MAT555	3	3	2	2	2	3	1	2	2	3

Level-1

Semester – I

S.	Course	Course Title	Type of Course	L	Т	Р	Credits
No.	Code		(C/E)				
1	MAT101	Calculus-I	С	3	1	0	4
2	MAT102	Mathematics-I	С	3	1	0	4
		Total		3	1	0	4

Semester –II

S.	Course	Course Title	Type of Course	L	Т	Р	Credits
No.	Code		(C/E)				
1	MAT103	Calculus-II	C	3	1	0	4
2	MAT104	Mathematics-II	С	3	1	0	4
		Total		3	1	0	4

Course Code	MAT 111
Course Name	CALCULUS-I
Credit, Mode	04, LTP:3+1+0

Course Objectives: The main topics covered in this course will be sets, relations and functions, propositions, principles of counting, permutations and combinations, generating functions, graphs and planar graphs, trees, recurrence relations and some topics in group theory. The course also focuses in developing the understanding of the concepts of limit, continuity and differentiability of real functions together with real life applications of these concepts. The understanding of some fundamental theorems related to derivatives and their applications, together with the concept of asymptotes, curvature, convexity and concavity are core of the course.

Learning Outcomes:

- 1. The students will feel that a relation, which they come across in their daily life involves pairs of objects in certain order, they will learn how to link pairs of objects from two sets to introduce relations between the two objects in the pair.
- 2. The student will learn mathematical treatment of term relations, and will be able to differentiate relation and functions.
- 3. The student will be able to understand the applications of concept of limit continuity and differentiability of real functions.
- 4. The student will understand geometrical interpretation of mean value theorems.
- 5. The students would also be able to sketch the graph of functions, and curves and learn how this skill

will be applicable in finding out the area enclosed by two curves through the use of concept of definite integral.

Course Details

Unit-I: Sets and relations: Functions and their graphical representations, Different forms of Equation of a line, Limit of a function, Algebra of Limit, Continuous functions, Classifications of discontinuities, Differentiability of a function, Algebra of derivatives, Application of derivatives, Increasing and decreasing functions, Tangents and normals, Extreme values of functions. (15 L)

Unit-II: Mean value theorems and their geometrical interpretations, Taylor's and Maclaurin's series expansions, Successive differentiation and Leibnitz theorem; Indeterminate forms, L'Hospital Rule, Asymptotes, Curvature, Concavity and convexity, point of inflexion. (15 L)

Unit-III: Integration as inverse process of differentiation; Integration by substitution, Integration by partial fractions and by part, The fundamental theorem of calculus, Definite integrals and its application to find area under simple curve and area between two curves, Area of a curve using multiple integral, Change of order of integration. (15 L)

Recommended Reading:

- 1. Methods of Real Analysis by R. R. Goldberg.
- 2. Foundation of Differential Calculus by Euler, Translated by J.D. Blanton, Springer-Verlag, New York, 2000.
- 3. Calculus, Vol. 1, 2 by T. Apostol, John Wiley.
- 4. Mathematical Analysis by T.M. Apostal, Narosa Publishing House, 1985.
- 5. Differential and Integral Calculus by Shanti Narayan.

Course Code	MAT 121
Course Name	CALCULUS-II
Credit, Mode	04, LTP:3+1+0

Course Objectives: The first unit of the course focus on concept of real number system, e.g., the proper understanding of the concept of limit student must be familiar with the nature and important properties of real numbers. So starting from the concept of natural number we will develop the concept of real numbers and discuss it various properties which will be helpful in discussion of other concepts in this unit. The second unit of the course based on the fact that the knowledge of matrices is necessary in various branches of mathematics. The student may be familiar with the fact that evolution of concept of matrices is the result of an attempt to obtain compact and simple methods of solving system of linear equations. But they will learn here that matrices are not only used as a representation of the coefficients in system of linear equations, but utility of matrices far exceeds that use. The students will learn about various applications of matrix notation and operations in electronic spread sheet programs for personal computer, which in turn is used in different areas of business and science like budgeting, sales projection, cost estimation, analysing the results of an experiment etc. Third unit of the course provide application of partial derivative in vector calculus. The previous knowledge of evaluation of definite integral will be used here to develop skill of evaluation of line, surface and volume integral.

Learning Outcomes:

1. The student will understand the development of concept of real number and complex number systems.

- 2. The students will be familiar with various properties of real numbers and their use in defining concepts like, limit, continuity and differentiability of functions of one variable and functions of two variables.
- 3. The student will learn how concepts and properties of matrices are important in development of society?
- 4. The student will understand the importance and applications of concept of definite integrals and partial derivatives of a function in evaluation of line, surface and volume integral.
- 5. The students will understand the applications and proof of various important theorems related to this course.

Course Details

Unit-I: Real and complex number systems, Archimedean property, Well-ordering principle, Completeness axiom, Dedekind's cuts, Nested Interval theorem, Countable and uncountable sets, Real Sequences, limit superior and limit inferior, Infinite Series, Series with arbitrary terms, Leibnitz test, Functions of two variables: continuity, partial derivatives, Differentiability, Jacobian. (15L)

Unit-II: Matrices of real and complex numbers, Symmetric and Skew-symmetric matrices, Hermitian and Skew-Hermitian matrices, Determinant (Properties and Examples only), Rank, Inverse, Echelon form, Solution of system of linear equations, Eigenvalues and Eigen vectors, Cayley-Hamilton Theorem, Vector product and scalar product, Introduction to vector spaces and its properties. (**15** L)

Unit-III: Differentiation of vectors, differential operators (gradient, divergence, curl, Laplacian), Vector integration (line, surface, and volume integrals), Divergence theorem, Green's theorem and Stokes' theorem. (15 L)

Recommended Reading:

- 1. Vector Analysis by L Brand, Dover Publications, 2006.
- 2. Vector Analysis by Spiegel (Schaum's series)
- 3. Elementary Vector Analysis C. E. Weatherburn (Vol. I & II).
- 4. Linear Algebra (2nd Edition) by Rao and Bhimasankaram, Hindistan Publisher.
- 5. Advanced Engineering Mathematics, Erwin Kreyzig (9th Edition), John Willey Ed. 2006.
- 6. Mathematical Analysis II, J.N. Sharma and A.R. Vasishtha, Krishna Prakashan Mandir, 1991.
- 7.

Level-2

Semester –III

S.	Course	Course Title	Type of Course	L	T.	Р	Credits
No.	Code		(C/E)				
1	MAT201	Ordinary Differential	С	3	1	0	4
		Equations					
		Total		3	1	0	4

Semester – IV

S.	Course	Course Title	Type of Course	L	Т	Р	Credits
No.	Code		(C/E)				
1	MAT202	Discrete Mathematics	С	3	1	0	4
		Total		3	1	0	4

Course Code MAT 231

Course Name	Differential Equations
Credit, Mode	04, LTP:3+1+0

Course Objective: The main focus of this course on Differential Equations is to learn various methods to solve differential equations analytically as well as to learn some of the applications of differential equations. The course begins with very basic concept related to a differential equation. It covers both linear and nonlinear first order differential equations including singular solutions in case of nonlinear differential equations of higher order. In the last part of the course, we discuss the formulation of PDE along with various types of methods for solving linear and nonlinear partial differential equations (PDEs) of first order. The course finishes with the classification of second order PDEs.

Learning Outcomes: After completing this course, the student will be able to learn the following:

- 1. This course would be teaching a student what is a differential equation and what they mean by a solution of a differential equation and how to get solutions of differential equations using some known methods, what are various applications of a differential equation and how to get a differential equation from a real physical and biological processes?
- 2. Students will be able to learn that which method of solution is applicable for a specific differential equation. For example, when they can apply variable separable method for an ODE when the method of reduction of order is applicable to obtain a solution of a differential equation.
- 3. They will get good motivation and they will be able to generate certain kind of interest into the subject by observing some simple mathematical formulation of real life problems.
- 4. Student will also learn about the existence of a solution of a particular differential equation. Specifically, there are some differential equations which have no solution at all and there are some differential equation which have more than one solution.
- 5. The material of this course also underpins many later advance courses in Mathematical Modeling and Simulation, Mathematical Ecology, Mathematical Biology, Dynamical Systems and some other advanced courses related to differential equations, and thus should give students a good background for studying these more advanced topics.

Course Details

Unit-I: Order and degree of a differential equation, Ordinary differential equations of first order (linear and non-linear): Separable, Linear and reducible to linear, Homogeneous, Exact, Integrating factors, Total Differential Equations, Orthogonal trajectories, Picard's theorem, examples of non-uniqueness of solutions, First order but higher degree differential equations solvable for x, y, p., Basic concepts of singular solutions, Applications of first order differential equations. (15 L)

Unit-II: Second and higher order linear differential equations: Basic theory of linear differential equations, Homogeneous linear differential equations with constant coefficients and variable coefficients, Reduction of order, Change of independent variable, Method of undetermined coefficients, Applications of second and higher order differential equations. (15 L)

Unit-III: Formulation of PDEs, Partial Differential Equations of first order: Linear and Non-linear, Quasilinear, Semilinear, La-grange's method, Charpit's method, Linear PDE with constant coefficients, Classification of second order PDEs. (15 L)

Recommended Reading:

- 1. S.L. Ross, Differential Equations, Wiley, 2007
- 2. G.F. SMATons, Differential Equations with Applications and Historical Notes, McGraw Hill Education, 2017
- 3. Laksmikantham, Deo and Raghavendra, Ordinary differential equations, McGraw Hill Education
- 4. E. A. Coddington, An Introduction to Ordinary Differential Equations, Dover Publications, 1989
- 5. K. S. Rao, Introduction to PDEs, PHI Learning, 2011.
- 6. I. N. Sneddon, Elements of Partial Differential Equations, McGraw-Hill Book Company, 1988.
- 7. Y. Pinchover and J. Rubinstein, An Introduction to Partial Differential Equation, Cambridge University press, 2005.

Course CodeMAT 241Course NameDISCRETE MATHEMATICSCredit, Mode04, LTP:3+1+0

Course Objectives: The course starts with proper introduction about discrete mathematics, then going to the sessions on mathematical reasoning and problem solving. Then it covers several counting techniques including permutation, combinations and pigeon-hole principle etc. Finally covering graph theory. In brief, the main topics covered in this course will be sets, relations and functions, propositions, principles of counting, permutations and combinations, generating functions, graphs and planar graphs, trees, recurrence relations and some topics in group theory. Moreover, this course is organised in such a way that students will be able to assimilate all units included in this course.

Learning Outcomes: The course stresses on mathematical reasoning and different ways in problem solving. After completing this course, the student will be able to learn the following:

- 1. This course would be teaching a student how to think logically and mathematically?
- 2. Students will be able to express a logic sentence in terms of predicates, quantifier and logical connectives.
- 3. They will learn various types of relations including equivalence and partial order relations.
- 4. Students would be able to use rules of inference and methods of proofs including direct and indirect proof forms: proof by contradiction and mathematical induction.
- 5. They will be able to use three graphical algorithms to solve problems.
- 6. They will also learn group and several concepts related to a group.
- 7. There are several applications where these discrete objects can be used like, the problem of determining the shortest route from one city to another city using graphs.

Course Details

Unit-I: Set, function and logic, Types of functions, Relations, Equivalence relations, Partial Orderings, Principle of mathematical induction, Propositions and predicates, Logic and Proofs: Proposition, Quantifiers, Rules of Inference, Proof Methods and Strategy, Combinatorics: Principles of counting, Arrangements, Permutation and Combinations, Partitions and allocations, Pigeon-hole principle (15 L)

Unit-II: Graphs and Planar Graphs: Graph, Multigraph, Bipartite, GraphWeighted Graphs, Directed graphs. Paths and circuits. Matrix representation of graphs, Eulerian Paths and Circuits, Walks, Paths, Cycles, Hamiltonian cycles and travelling salesman problems, Trees, Distances and Shortest Paths, Minimum spanning trees. (15 L)

Unit-III: Group Theory: Definition and examples of various types of groups, Subgroups, Subgroup Tests, Cyclic group, Classification of subgroups of Cyclic groups, Permutation group, Isomorphism, Properties of Isomorphisms, Cosets and Lagrange's Theorem (15 L)

Recommended Reading:

- 1. C.L. Liu, Elements of Discrete Mathematics, 2nd Ed., McGraw Hill, International Edition, 1986.
- 2. J.P. Tremblay and R. P. Manohar, Discrete Mathematical Structures with Applications to Computer Science, McGraw-Hill, 1989
- 3. S. Wiitala, Discrete Mathematics: A Unified Approach, McGraw-Hill Book Co.
- 4. N. Deo, Graph Theory with Applications to Computer Science, Prentice-Hall of India.
- 5. J. H. Van Lint and R. M. Wilson, A course in combinatorics, 2nd Ed. Cambridge Univ. Press

Level -3

S. No.	Course Code	Course Title	Type of Course (C/E)	L	Т	Р	Credits		
Semes	Semester-V (Int. M.Sc.)								
1	MAT 301	Foundation of Linear Algebra	CC	3	1	0	4		
2	MAT 302	Metric Space and Riemann Integration	CC	3	1	0	4		
3	MAT 303	3-Dimensional Geometry	CC	3	1	0	4		
4	MAT 331	Elective	DE	3	1	0	4		
5		Elective	GE	3	1	0	4		
6	MAT 381	Self-study Course	AECC	3	1	0	4		
	Total					0	24		
Semes	ter-VI (Int	. M.Sc.)							
1	MAT 304	Foundation of Abstract Algebra	CC	3	1	0	4		
2	MAT 305	Foundation of Complex Analysis	CC	3	1	0	4		
3	MAT 306	Linear and Nonlinear Programming	CC	3	1	0	4		
4	MAT 332	Elective	DE	3	1	0	4		
5		Elective	GE	3	1	0	4		
6	MAT 382	Minor Project	AECC	3	1	0	4		
	Total					0	24		

<u>Course-Code: MAT-301</u> <u>Course Title: Foundation of Linear Algebra</u>			
Teachi	ing Scheme	Examination Scheme	Credits Allotted
Theory: 3 hours/ week		EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3
Tutorial: 1 Hour/Week			Tutorial: 1
			Total: 4
Course	e Prerequisite: The s	tudent should have knowledge of	
1.	Sets, Functions,	Matrices, Field	
Course	e Objective:		
1	To introduce the system of linear	e system of linear equations, equivalenc equations	e of two systems, solutions of
2	To teach vector spaces, basis, dimension		
3	To introduce linear transformations between any two vector spaces, eigenvalues, and eigenvectors.		ector spaces, eigenvalues, and
4	To introduce inner product spaces and associated concepts e.g., norm, orthogonal sets		e.g., norm, orthogonal sets
Course	e Outcomes: The stud	lents will be able to learn	
1.	how to analyze a	nd solve systems of linear equations	
2	that whether a given a set of vectors is a vector space, a subspace, or a basis for a vector space		
3.	how to compute belonging to an e	e eigenvalues and eigenvectors, algebr eigenvalue	aic and geometric multiplicities

4.	different concepts about linear transformations and inner product spaces		
5.	how to use and take help of different concepts associated with system of vector spaces, linear transformations, and inner product spaces in advan Linear Algebra	-	
Course C	ontent:		
Unit-I	System of linear equations: Equivalent systems, Matrices, Elementary row operations, Row-reduced echelon matrices, Block matrices, Vector spaces: Definition, Subspaces, Linear span, Linear dependence and linear independence, Direct sums.	15 Hours	
Unit-II	Basis, Dimension, Ordered bases and coordinates, Linear transformations: Definition and examples, Null spaces, Range spaces, Rank-nullity dimension theorem, Matrix of a linear transformation, Isomorphism, Change of basis	15 Hours	
Unit-III	Eigenvalues and eigenvectors of linear operators, Computing eigenvalues and eigenvectors of different types of matrices, Diagonalization, Symmetric matrices, Inner product spaces: Definition and examples	15 Hours	
Unit-IV	Cauchy-Schwarz inequality, Triangle inequality, Orthogonal sets and bases, Gram-Schmidt process, Induced Norm, Normed vector spaces, quadratic forms.	15 Hours	
Internal A	Assessment:		
CIA*-1	Unit -I		
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce		
EoSE**	Unit-I,II,III,IV		
	ious Internal Assessment f Semester Examination		

Text Books:

- 1. Hoffmann K. and Kunze R., 1992, *Linear Algebra*, Prentice Hall of India.
- 2. Friedberg S. H., Insel A.J., Spence L.E., 2019, Linear Algebra, Pearson Education.
- 3. Kumaresan S., 2000, Linear Algebra: A Geometric Approach, Prentice Hall of India.
- 4. Strang, G. Linear Algebra and its Applications, Thomson.
- 5. Sahai V., Bist V., 2013, Linear Algebra, Alpha Science International

Reference Books:

- 6. Halmos, P.R., 2011 Finite Dimensional Vector Spaces, Springer
- 7. Axler S., 1997, *Lineär Algebra*, Springer.

E-resources:

https://web.mit.edu/18.06/www/videos.shtml

Course-Code: MAT302 Course Title: Metric Space and Riemann Integration		
Teaching Scheme	Examination Scheme	Credits Allotted
Theory: 3 hours/ week	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3

Tutorial: 1 Ho	our/Week			Tutorial: 1
				Total: 4
Course Prero	Course Prerequisite:			
	Basics of real analysis and integral calculus.			
Course Obje	Course Objective: To develop the concept of			
1.	metric functio	ns, different kinds of m	etric spaces and their	r properties.
2.	continuity and	d completeness properti	es in a metric space.	
3.	compactness and characterization of metric spaces.			
4.	Riemann-integration and their properties.			
Course Outc	omes: Students	will be able to		
1.	identify different kinds of metric spaces and verify their properties.		roperties.	
2.	verify the different properties of completeness metric space under continuity.		e under continuity.	
3.	verify the different characteristics of a compact metric space.			
4.	. check the integrability condition and different properties of Riemann-integration.		of Riemann-integration.	
Course Cont	ent:			
Unit-I	Definition and examples of metric spaces, distance between two set, Diameter of a set, Interior points,			

	1	-
	Open sets and its properties, Equivalent metric space, Closed sets and its properties, Adherent points, Limit points, Subspaces of a metric space, Dense set, Separable metric space. Product of metric spaces.	
Unit-II	Continuous functions on a metric space, Properties of continuous functions, Uniform continuity, Homeomorphism, Isometry, Sequences in the metric spaces, Cauchy sequence, Complete metric space, Properties of complete metric space.	15 Hours
Unit-III	Compact spaces, Countably compact spaces, Bound sets, Finite intersection property, Lebesgue number, Characterizations of compactness, Continuous functions on compact spaces.	15 Hours
Unit-IV	Riemann integration, Darboux's theorem, Riemann integrability, Fundamental theorem of integral calculus. First and second mean value theorem of integral calculus. Functions of two variables: continuity, differential and differentiability, Jacobians.	15 Hours
Internal Asso	essment:	
CIA*-1	Unit I	
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit II and III	
EoSE**	Written Exam. for Unit-I, II, III, & IV	
	s Internal Assessment mester Examination	
Text Books:		
Corre 2. Malik Delhi	sundaram, D. and Chaudhary, B., 2018, A First Course acted Edition), Narosa Publishing House, New Delhi. & S. C. and Arora S, 2017, <i>Mathematical Analysis</i> , New , S.K., 2019, <i>Introduction to Real Analysis</i> , Levant Books,	Age Int. Ltd. Publishers, New

Reference Books:

- 1. Rudin W., 2016, *Principles of Mathematical Analysis* (3rd Ed.), McGraw Hill International Edition.
- 2. Apostol T. M., 1996, Mathematical Analysis (2nd Ed.), Narosa Publishing House, New Delhi.

E-resources:

- 1. https://nptel.ac.in/courses/111106053
- 2. https://nptel.ac.in/courses/111101134

<u>Course-Code: MAT-303</u> <u>Course Title: 3-Dimensional Geometry</u>			
Teaching Scheme		Examination Scheme	Credits Allotted
Theory: 3 Hours/week		EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3
Tutorial:	1 Hour/week		Tutorial: 1
			Total: 4
Course Pi	rerequisite: The	student should have knowledge of	
1.	Basic Concepts of basic geometry.		
Course Objective: This course aims to learn			
1.	The properties of conics in two and three dimensions.		
2.	The geometry	of conics in two and three dimensions and their int	ersections.
3.	The nature of the second-degree equation.		
Course Outcomes: The students will be able to understand			
1.	To write math	ematical representations of conics in 2 and 3 dimer	isions.
2.	The sketches of	of conic sections in 2 and 3 dimensions.	

3.	The properties and intersections of the conic sections.		
4.	To identify and classify the nature of quadratic equations.		
Course Co	ourse Content:		
Unit-I	Straight lines in space (Symmetric & Parametric form), Direction ratio and direction cosines, Canonical equation of the line of intersection of two intersecting planes, Angle between two lines, Distance of a point from a line, Condition of coplanarity of two lines, Equation of skew- lines, Shortest distance between two lines.	15 Hours	
Unit-II	Sphere: General equation, Sphere through the intersection of two spheres, radical plane, tangent, normal. Cone: Right circular cone, general homogeneous second degree equation, section of cone by a plane as a conic and as a pair of lines, condition for three perpendicular generators, reciprocal cone.	15 Hours	
Unit-III	Cylinder: Generator parallel to either of axes, general form of equation, right-circular cylinder. Conicoid: Ellipsoid, hyperboloid, paraboloid, tangent planes, normal, enveloping cone, enveloping cylinder.	15 Hours	
Unit-IV	Surface of revolution (about axes of reference only), ruled surface, reduction of the general equation of second degree, canonical equations only.	15 Hours	
Internal A	ssessment:		
CIA-I*	Unit-I		
CIA-II	Written Exams/ Quizzes/ Assignment/ Presentations/ Viva-Voce based on Unit III		
CIA-II EoSE**	- · · ·		
EoSE** *: Continu	based on Unit III		
EoSE** *: Continu	based on Unit III Unit-I, II, III, IV ous Internal Assessment Semester Examination		
EoSE** *: Continu **: End of Text Book	based on Unit III Unit-I, II, III, IV ous Internal Assessment Semester Examination		
EoSE** *: Continu **: End of Text Book 1. Lo 2. Be	based on Unit III Unit-I, II, III, IV ous Internal Assessment Semester Examination	ensions,	
EoSE** *: Continu **: End of Text Book 1. Lo 2. Be Ge 3. Sn	based on Unit III Unit-I, II, III, IV ous Internal Assessment Semester Examination s: ney S. L., 2012, <i>The Elements of Coordinates Geometry</i> , General Books. II J. T., 2010, <i>An Elementary Treatise on Coordinate Geometry of Three Dim</i>		
EoSE** *: Continu **: End of Text Book 1. Lo 2. Be Ge 3. Sn Ge	based on Unit III Unit-I, II, III, IV ous Internal Assessment Semester Examination s: ney S. L., 2012, <i>The Elements of Coordinates Geometry</i> , General Books. II J. T., 2010, <i>An Elementary Treatise on Coordinate Geometry of Three Dime</i> eneral Books.	oordinate	

E-resources:

	<u>Course-Code:</u> MAT304 <u>Course Title:</u> Foundation of Abstract Algebra				
Tea	ching Scheme	Examination Scheme	Credits Allotted		
Theory: 3 hours/ week		EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3		
Tuto	orial: 1 Hour/Week		Tutorial: 1		
			Total: 4		
Cou	rse Prerequisite: The	student should have knowledge of	I		
1.	basic concepts of set theory				
Cou	rse Objectives:				
1.	To teach the students the basics of groups,				
2.	To teach the students	s the properties of group homomorphisms.			
3.	To teach the students the basics of rings				
4.	To introduce the concepts of irreducible polynomials.				

Cour	Course Outcomes: Students will be able to learn			
1.	the construction of few groups			
2	the coset decomposition and properties of homomorphisms			
3	the structure of finite abelian groups			
4	fields and their properties			
Cour	rse Content:			
Uni t-I	Introduction to Groups: examples and properties, Cyclic and Abelian group, Dihedral Groups, Order of an element of a group, Symmetric Group, Even and Odd Permutation, Alternating Group and its generators, Sub-groups	15 Hours		
Uni t-II	Center, Coset Decomposition of a Group, Index of a subgroup, Lagrange's Theorem, Normal subgroups, Quotient groups, Homomorphism and Isomorphism of groups, Group of Automorphisms, Inner Automorphisms, Automorphisms of cyclic groups,.	15 Hours		
Uni t- III	Kernel of a Homomorphism, Fundamental Theorem of Homomorphism, Cayley's Theorem, Direct Product (External and Internal) of Groups. Fundamental Theorem of Finite Abelian groups, Introduction to Rings: examples and properties, Integral Domains, Division Rings	15 Hours		
Uni t- IV	Fields and its Characteristics, Subrings, Ideals, Quotient Ring, Homomorphism and Isomorphism of Rings, Fundamental Theorem of Ring Homomorphism, The Field of Quotients, Polynomial Rings, Division Algorithm, Eisenstein's Criterion of irreducibility.	15 Hours		
Inter	rnal Assessment:			
CI A* -1	Unit -I, II			
CI A- II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit III			
Eo SE **	Unit-I,II,III,IV			
	ontinuous Internal Assessment and of Semester Examination			

Text Books:

1. Fraleigh J., 2013, A First Course in Abstract Algebra (3rd Ed.), Narosa Publishing House.

2. Gallian J. A., 1999, Contemporary Abstract Algebra, Narosa Publication House, New Delhi.

3. Artin M., 2011, Algebra, Prentice Hall India, New Delhi.

4. Dummit D. S. and Foote R. M., 2008, Abstract Algebra, Wiley India Pvt. Ltd.

Reference Books:

Robinson, D. J. S., 1996, A Course in the Theory of Groups, Springer New York, New York

E-resources:

https://archive.nptel.ac.in/courses/

<u>C</u>	<u>Course-Code: MAT-</u> 305 <u>ourse Title:</u> Foundation of Complex Analysis	
Teaching Scheme	Examination Scheme	Credits Allotted

Theory: 3	hours/ week	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3
Tutorial: 1	Hour/Week		Tutorial: 1
			Total: 4
	rerequisite: The st and foundation of re	udent should have knowledge of complex numbers, pr eal analysis.	operties of complex
Course O	bjective:		
1	This course aim	to provide an introduction of functions of a comp	lex variable.
2	Students will be complex variabl	e equipped with the understanding of the fundame e theory.	ntal concepts of
	To make studer	nts understand the functions of complex variable	
Course O	utcomes: Student	s will be able to	
1.	evaluate limit, continuity and differentiability of function of complex variables.		olex variables.
2.	learn nature of basic functions of complex variable like exponential, logarithmic, trignometric and hyperbolic.		
3.	find complex line integration and proof of fundamental theorems like necessary and sufficient conditions for differentiability, Cauchy Gaursat theorem, Cauchy's theorem, Cauchy's integral theorem etc.		
4.	learn many resu	lts and concepts both analytically and geometrical	lly.
Course C	ontent:		
Unit-I	Geometric Inte complex plane, complex plane, Functions of	bers, Conjugation, Modulus and Argument, erpretation of complex numbers, Extended Square roots, Rational powers, Topology of Sequence and series, Stereographic projection. a complex variable, Univalent functions, it, Theorems on limit, Limit at infinity.	15 Hours
Unit-II	Differentiation, Necessary and Complex form	eries of functions and convergence, Continuity, Differentation of composite functions, sufficient conditions for differentiability, of Cauchy Riemann equations, Polar form of an equations and Laplacian, Consequences of C-	15 Hours

	R equations, Analytic functions, Harmonic functions, Harmonic Conjugate, Milne-Thomson method.	
Unit-III	Antiderivative theorem, Power series, Uniqueness theorem for power series, Exponential function, Mappings by exponential function, Logarithmic function, Mappings by Logarithmic function, Multivalued functions and its branches, Branches and derivative of lograrithms, Identities involving lograrithms, Complex exponents, Trigonometric functions, Hyperbolic functions, Inverses of trigonometric and hyperbolic functions.	15 Hours
Unit-IV	Curves in complex plane, Complex line integration, ML- inequality, Interchange of limit and integration, Interchange of summation and integration, Week form of Cauchy theorem, Cauchy Gaursat theorem for triangle, open convex domains and open connected domains, Cauchy's theorem, Simply and multiply connected domains, Cauchy's integral theorem, Cauchy integral formula.	15 Hours
Internal	Assessment:	
CIA*-1	Unit -I	
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/Viva-Voce based on Unit II and III	
EoSE**	Unit-I,II,III,IV	
	Luous Internal Assessment f Semester Examination	I
Text Boo	ks:	
H 2. P 3. K	rown J.W. and Churchill R.V., 2009, <i>Complex Variables and Applica</i> ill. onnusamy S., 2005, <i>Foundations of Complex Analysis</i> , Narosa Publication asana H.S., 2005, <i>Complex Variables: Theory and Applications</i> , PHI. udin W., 2006, <i>Real and Complex Analysis (3rd Addition)</i> , Tata McGraw	n House.

	<u>(</u>	<u>Course-Code: MAT-306</u> course Title: Linear and Nonlinear Program	nming	
Teach	ning Scheme	Examination Scheme	Credits Allotted	
Theory: 3 hours/ week		EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3	
Tutori	al: 1 Hour/Week		Tutorial: 1	
			Total: 4	
Cours	se Prerequisite: The	student should have knowledge of		
1.	Basic Concepts	s of Linear Algebra		
2.	Basic Concepts	s of Calculus		
Cours	se Objective:			
1	To teach the stu	To teach the students the skills to formulate real-world problems as linear programs,		
2	To teach the stu	To teach the students the theoretical principles of linear optimization.		
3		To introduce different types of linear programming problems, e.g., Transportation problem, assignment problem, integer linear programming problems.		
4	To teach two problems.	To teach two person zero sum game theory and its relation with linear programming problems.		
5	To introduce th	To introduce the concepts of nonlinear programming and its underlying structure.		
Cours	se Outcomes: The st	udents will be able to learn		
1.	the feasible, basic feasible, optimal solutions to linear programming problems, and the basic structure of linear programming problems.			
2	different solution	different solution methodologies for linear programming problems.		
3		dual linear programming problem, its solution on zero sum games with linear programming p		

	programming problems, such as transportation and assignment problems, will be learnt.			
4	solution methodologies of integer linear programming problems and nonlinear programming problems.			
Course C	Content:			
Unit-I	Convex sets, extreme points, convex hull, hyper plane & polyhedral Sets, convex function and concave functions (definitions and simple examples). Concept of basis, basic feasible solution (BFS), degenerate and non-degenerate BFS. Formulation of linear programming problem (LPP),	15 Hours		
Unit-II	LPP in matrix form. Graphical method of LPP. Simplex method and its geometrical interpretation. Big M method. Two Phase method, Degeneracy and cycling,	15 Hours		
Unit-III	Define the dual problem and its various forms. Duality theorems, complementary slackness theorem. Dual Simplex method. Two- person zero sum game, equivalence between LPP and two-person zero sum game. Transportation problem (TP). Assignment problem (AP).	15 Hours		
Unit-IV	Integer linear programming problem (ILPP), Gomory's cutting plane method, branch and bound method. Introduction to nonlinear programming problems (NLPP), Lagrange multiplier method, Karush Kuhn Tucker (KKT) conditions.	15 Hours		
Internal	Assessment:			
CIA*-1	Unit -I			
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce			
EoSE**	Unit-I,II,III,IV			
	uous Internal Assessment f Semester Examination	1		
Text Boo	ks:			

Hillier F. S., Lieberman G. J., Nag B. and Basu P., 2012, *Introduction to Operations Research*, Tata McGraw Hill Education Pvt. Ltd.

Taha H. A., 2007, Operations Research-An Introduction, Prentice Hall of India Pvt. Ltd.

Hadley G., 1987, Linear Programming, Narosa Publishing House Pvt. Ltd.

Reference Books:

1. David G. Luenberger, Yinyu Ye, 2021, *Linear and Nonlinear Programming (5th Ed.)*, Springer New York, NY.

E-resources:

https://archive.nptel.ac.in/courses/111/102/111102012/

LEVE	LEVEL-3 (Electives) (DE)					
S. No.	Course Code	Course Title	Credit	Course proposed/revised by	Remarks	
1	MAT331	CALCULUS OF VARIATIONS AND INTEGRAL EQUATION	4	Dr. Kamlesh Jangid		
2	MAT332	NUMERICAL METHODS	4	Dr. Kamlesh Jangid		
3.	MAT333	Mathematics in India from Vedic Period to Modern time	4	Dr. Jai Prakash Tripathi		

	<u>Course-Code: MAT-331</u> <u>Course Title: Calculus of Variations and Integral Equations</u>					
Teaching	g Scheme	Examination Scheme	Credits Allotted			
Theory:	3 hours/ week	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3			
Tutorial	: 1 Hour/Week		Tutorial: 1			
			Total: 4			
Course I	Prerequisite: The st	udent should have knowledge of				
1.	Basic concepts of differential equations.					
2.	Basic concepts of calculus.					
Course (Objective: This cou	rse aims to learn				
1.	The necessary and sufficient condition for extremum.					

2.	The technique to solve the extremum problem under fixed and moving boundaries.		
3.	The different types of kernel and their properties.		
4.	The solution approaches Volterra and Fredholm integral equations under different of kernels.	erent types	
Course O	utcomes: The students will be able to learn		
1.	The variational functional, extremum, maxima, minima, Euler's equation properties.	n and their	
2.	The different solution methodologies of variational problems under free boundary conditions.	and moving	
3.	The linear integral equation and their properties, conversion of integral equa and BVP.	tions to IVP	
4.	The different types of kernels and their properties.		
5.	The number of fundamental mathematical ideas and techniques that lie at the integral equation approach.	e core of the	
Course C	ontent:		
Unit-I	Motivation problems of calculus of variations, Variation of a functionals and its properties, Euler's equations and application, Extremals, Geodesics, Variational problems for functional involving several dependent variables and their first order derivatives.	15 Hours	
Unit-II	Functionals dependent on higher order derivatives, Functionals dependent on the function of more than one independent variable, Variational problems in parametric form, Hamilton principle, variational problems with moving (or free) boundaries.	15 Hours	
Unit-III	Linear integral equation and classification of conditions, Volterra integral equation, Relationship between linear differential equation and Volterra integral equation, Resolvent kernel of Volterra integral equation, method of successive substitution and successive approximation, solution of integral equation by Resolvent kernel.	15 Hours	
Unit-IV	Fredholm integral equation, boundary value problems reduced to Fredholm equations, Fredholm equation of the second kind, method of successive approximation, Fundamentals-iterated kernels, constructing the resolvent kernel with the aid of iterated kernels, Integral equation with degenerate kernels, solutions of homogeneous integral equation with degenerate kernel.	15 Hours	
Internal A	Assessment:		
CIA*-1	Unit -I		

CIA-II	Written Exams/ Quizzes /Assignment /Presentations/Viva-Voce
EoSE**	Unit-I,II,III,IV
	nous Internal Assessment f Semester Examination
Text Boo	KS:
1. Pi	pe L. A., 1970, Applied Mathematics for Engineers and Physicists, McGraw Hill.
2. H	arper C., 2004, Introduction to Mathematical Physics, PHI New Delhi.
3. K	anwal R. P., 1997, Linear Integral Equations, Academic Press, New York
4. B	ansal J.L. and Dhami H. S., Differential Equations Vol.II, JPH, 2004.
E-resour	ces:
https://a	rchive.nptel.ac.in/courses/111/107/111107105/

<u>Course-Code: MAT-332</u> <u>Course Title: Numerical Methods</u>					
Teaching Scheme	Examination Scheme	Credits Allotted			
Theory: 3 hours/ week	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3			
Tutorial: 1 Hour/Week		Tutorial: 1			
		Total: 4			
Course Prerequisite:					
Course Objectives:	Course Objectives:				
-	To develop the understanding of several methods for interpolation, methods to solve algebraic and transcendental equations.				

2	To develop direct and iterative methods to solve a system of linear equations, different methods to solve ODE and methods to find numerical derivative and integration of a function.			
Course O	utcomes: Students will be able to			
1.	find the interpolating polynomial and its values			
2	solve an algebraic and transcendental equation			
3	evaluate derivative and integration of a function, numerically			
4	solve ordinary differential equations, numerically.			
Course C	ontent:			
Unit-I	Finite difference operators, difference tables, Interpolation, Interpolation with equal intervals, Methods of interpolation: Newton- Gregory interpolation method, Interpolation with unequal intervals: Divided difference, Newton's formula for unequal intervals, Lagrange's interpolation formula, Central difference interpolation formulae: Central difference operators. Gauss forward, backward and modified formulae, Stirling and Bessel's central difference formulae.	15 Hours		
Unit-II	Numerical differentiation and integration: method of differentiation based on interpolation, methods based on finite difference operators. Integration by Trapezoidal rule, Simpson's 1/3 rd rule, Simpson's 3/8 th rule, Weddle's rule, Newton Cotes Quadrature formula.	15 Hours		
Unit-III	Numerical Solution of Algebraic and Transcendental equations: Bisection method, Regula-Falsi method, iteration method and Newton-Raphson method along with the rate of convergence.	15 Hours		
Unit-IV	Numerical solution of Ordinary Differential Equations: Euler method, Modified Euler method, Picard's method, Runge-Kutta method.	15 Hours		
Internal A	Assessment:			
CIA*-1	Unit -I			
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/Viva-Voce			
EoSE**	Unit-I,II,III,IV			
	ious Internal Assessment f Semester Examination			

Text Books:

- 1. Atkinson K. E., 1989, An Introduction to Numerical Analysis (2nd Ed.), Wiley-India.
- 2. Buchaman J. I. and Turner P. R., 1992, Numerical Methods and Analysis, McGraw-Hill.
- 3. Jain M. K., Iyengar S. R. K. and Jain R. K., 2012, Numerical Methods for Scientific and Engineering Computation (6th Ed.), New Age International Publishers.
- 4. Sastry S. S. 2019, Introductory Methods of Numerical Analysis, PHI.

E-resources:

https://archive.nptel.ac.in/courses/111/107/111107105/

<u>Course-Code: MAT 333</u> Course Title: Mathematics in India from Vadic Period to Modern time						
Teaching Scheme	Teaching Scheme Examination Scheme Credits Allotted					
Theory: 3 hours/ week	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3				
Tutorial: 1 Hour/Week		Tutorial: 1				
Total: 4						
Course Prerequisite: Prior exposure is not required						

Course Obje	ctive:		
1.	To provide a glimpse of how various important mathematical ideas got evolved in India over several millennia		
2.	To the study of some of the finest intellectual achievements of humanity		
3.	to introduce in a balanced manner the primary source material (Sanskrit text) in which the technical ideas have been expressed		
4.	To discuss numbers in the Vedas, details of construction of geometrical figures		
4.	to discuss the development of mathematics in modern India , especially highlighting the work of Srinivasa Ramanujan		
Course Outc	omes: The students will be able to learn		
1.	how some of the most fundamental concepts and ideas in mathematics starting from the decimal-place-value system to expressing a finite quantity in terms of an infinite series, as well as the foundations of calculusgot originated in India		
2.	the details of arithmetic, algebra, geometry, trigonometry and combinatorics, as discussed in the works of Aryabhata, Brahmagupta, Mahavira, Bhaskaracharya and Narayana Pandita.		
3.	the development of ideas and techniques of calculus and spherical trigonometry.		
4.	how mathematics and its practice are deeply connected with culture.		
Course Cont	ent:		
Unit-I	Introductory Overview (MDS), Vedas and Sulbasutras, Panini's Astadhyayi, Pingala's Chandahsastra, Decimal place value system, Aryabhatiya of Aryabhata		
Unit-II	Aryabhatiya of Aryabhata and Introduction to Jaina Mathematics, Brahmasphutasiddhanta of Brahmagupta, Brahmasphutasiddhanta of Brahmagupta and The		

	BakhshaliManuscript, Mahaviras Ganitasarasangraha, Development of Combinatorics	
Unit-III	Lilavati of Bhaskaracarya, Bijaganita of Bhaskaracarya, Ganitakaumudi of Narayana Pandita, Magic Squares, Development of Calculus in India,	15 Hours
Unit-IV	Jyanayanam: Computation of Rsines, Trigonometry and Spherical Trigonometry, Proofs in Indian Mathematics, Mathematics in Modern India	15 Hours
Internal Ass	essment:	
CIA*-1	Unit -I	
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce	
EoSE**	Unit-I, II, III, IV	
	s Internal Assessment emester Examination	I
Text Books:		
1. Iyenş	gar, C.N.S., 1967, <i>History of Indian Mathematics</i> , World Pre	ess, Calcutta.
2. Bag,	A.K., Mathematics in Ancient and Medieval India, Choukha	ambha,Varanasi.
3. Saras Vara	swati Amma, T.A., <i>Geometry in Ancient and Medieval</i> nasi	India, Motilal Banarsidass,
	a, B., Singh, A.N., 2004, History of Hindu Mathematics, Delhi.	, Bharatiya Kala Prakashan,
	n, G.G., Srinivas M.D., Sridharan, R., 2005, <i>Contributions to</i> dia, Hindustan Book Agency, New Delhi.	o the History of Mathematics
Reference	ce Books:	

6. Seshadri, C.S., 2011, Studies in History of Indian Mathematics, Hindustan Book Agency, New Delhi.

E-resources:

https://nptel.ac.in/courses/111101080

LEVEL-3 (Self Study Course)					
S. No.	Course Code	Course Title	Credit	Course proposed/revised by	Remarks
1	MAT381	Invitation to Mathematics, Curves and Surfaces	4	Dr. Jai Prakash Tripathi	

<u>Course-Code: MAT-381</u> Course Title: Invitation to Mathematics, Curves and Surfaces							
Teaching Scheme		Examination Scheme	Credits Allotted				
Theory: 3 hours/ week		EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3				
Tutorial: 1 Hour/Week			Tutorial: 1				
			Total: 4				
Course P	rerequisite: The	student should have knowledge of					
1.	Calculus and elementary mathematics						
Course O	bjective:						
1	To introduce fundamental concepts in Mathematics with more precise and advanced way						
2	To make the students learn about polynomials in several variables and counting of monomials						
3	To introduce different concepts in matrices and linear transformations						

4	To introduce curve and surfaces in 2-dimensional and 3-dimensional spaces				
5.	To discuss the use of different concepts from differential geometry in the study of curves and surfaces				
Course O	utcomes: The students will be able to learn				
1.	different topics in Mathematics including polynomials in several variables,				
2.	different concepts associated with a linear transformation, Transformations in Euclidean Geometry- circle inversions.				
3.	curves, surfaces and different associated concepts				
4	curves and surfaces in R ³				
Course C	ontent:				
Unit-I	Polynomials: Interpolation, Taylor's formula, Polynomials with integer values, Polynomials in several variables, Counting monomials, Counting Principles: Basic methods, the Pigeonhole principle, the Binomial theorem, Permutations, Graphs, Recurrence relations, Bijective proofs, Functions: Continuous functions, the Intermediate value property and its applications, Fixed points, Linear transformations of the plane.	15 Hours			
Unit-II	The Derivative and dilations, Higher order derivatives and the binomial theorem, Polynomial approximation to functions, Matrices: Matrices and transformations, Multiplication vs composition, Determinants as dilation factors,Polynomials applied to matrices, Matrices in probability theory. Matrices in Polynomial interpolation, the Vandermonde determinant, Conservation laws: Invariants of transformations, Discrete transformations, and applications, Transformations in Euclidean Geometry- circle inversions.	15 Hours			
Unit-III	Curves in R ² and R ³ : : Level curves and locus, definition of parametric curves, tangent, arc length, arc length parameterization,	15 Hours			

	How much a curve is 'curved', signed unit normal and signed curvature,rigid motions, constant curvature. Curves in R^3, principal normal and bi-normal, torsion, Curves in R^3, principal normal and bi-normal, torsion. Lecture-4: Frenet-Serret formula, : simple closed curve and isoperimetric inequality, Surfaces-1: Smooth surfaces: :Surfaces and parametric surfaces, examples,regular surface and non- example of regular surface, transition maps, Transition maps of smooth surfaces, smooth function between surfaces, diffeomorphism.			
Unit-IV	Surfaces -2: First Fundamental Form, :Surfaces of revolution, quadratic surfaces, First Fundamental Form, isometry, Conformal maps, Examples, : Curvature, normal curvature. Lecture -2:Principal curvatures,Euler's Theorem. Geometry of principal curvatures, Geodesics, Clairaut's Theorem , Pseudosphere.	15 Hours		
Internal A	Assessment:			
CIA*-1	Unit -I			
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce			
EoSE**	Unit-I,II,III,IV			
	ous Internal Assessment Semester Examination			
Text Books:				
1. Montieal S., Ross A., 2009, Curves and Surfaces, American Mathematical Society				
	chleicher D., Luckmann, 2011, An invitation to Mathematics: From Comporinger.	petition to Research,		
3. Raussne M., 2008, Elementary Differential Geometry: Curves and Surfaces, Springer				
4. Dresden A., 1882, An invitation to Mathematics, New York, H. Holt and Company				
Reference	Books:			

5. Abate A., Tovena F., , 2012, Curves and surfaces, Springer

E-resources:

https://nptel.ac.in/courses/111104095

Semester-VII (Int. M.Sc.)									
S. No.	Course Code	Course Title	Type of Course (C/E)	L	Т	Р	Credits		
Semester-I									
1	MAT401	Linear Algebra	CC	3	1	0	4		
2	MAT402	Real Analysis	CC	3	1	0	4		
3	MAT403	Topology	CC	3	1	0	4		
4		Elective	DE	3	1	0	4		
5		Elective	DE	1	0	1	2		
6		Elective	DE	1	0	1	2		
7		Elective	GE	3	1	0	4		

Total		1

Seme	Semester-VIII (Int. M.Sc.)						
S. No.	Course Code	Course Title	Type of Course (C/E)	L	Т	Р	Credits
1	MAT404	Complex Analysis	CC	3	1	0	4
2	MAT405	Mathematical Programming	CC	3	1	0	4
3	MAT406	Abstract Algebra	CC	3	1	0	4
4	MAT407	Qualitative Theory of Ordinary Differential Equations	CC	3	1	0	4
5		Elective	DE	3	1	0	4
6		MOOC	GE	3	1	0	4
	Total 18 6 0 24						

<u>Course-Code: MAT-401</u> <u>Course Title: Linear Algebra</u>		
Teaching Scheme	Examination Scheme	Credits Allotted
Theory: 3 hours/ week	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3
Tutorial: 1 Hour/Week		Tutorial: 1
		Total: 4
Course Prerequisite: The student should have knowledge of		

1.	Basic concepts in Linear Algebra and Matrices: System of linear equation Vector Spaces, Basis and Dimension	ons, Matrices, Rank,
Course (Objectives:	
1	To introduce the fundamental notions of algebra of linear diagonalizability, and different canonical forms	transformations,
2	To teach the students different characterization of diagonalization of a li	inear operator
3	To introduce the concept of orthonormal basis and their existence	
4	To create orthogonal and orthonormal bases: Gram-Schmidt process a orthonormal bases to solve application problems	and use bases and
5	To introduce adjoints of a linear operators, unitary and normal operators	5.
Course (Dutcomes: The students will be able to	
1.	Learn algebra of linear transformations, significance and use of eigenva	lue and eigenvectors
2.	Explain different concepts about linear transformations and inner produ-	ct spaces,
3.	Learn different characterization of diagonalization and canonical forms of a given linear transformation	
4	use and take help of different concepts associated with vector spaces, lin diagonalization and inner product spaces in other courses like functiona differential equations	
Course (Content:	
Unit-I	Review of vector spaces, The algebra of linear transformations, Isomorphism, Linear functionals, Annihilator, Double dual, Transpose of a linear transformation, Eigenvalues and Eigenvectors, and Eigenvectors.	15 Hours
Unit-II	Diagonalizability, Minimal Polynomial, Cayley Hamilton theorem.	15 Hours

	Invariant subspaces, Triangulability and Diagonalization in terms of the minimal polynomial, Direct-sum decompositions, Invariant direct sums.			
Unit-III	The primary decomposition theorem, Cyclic Subspaces And annihilators, Cyclic decomposition, Rational and Jordan forms. Symmetric and Skew-symmetric Bilinear Forms, Diagonalization of symmetric bilinear forms.	15 Hours		
Unit-IV	Inner product spaces: Best approximation, The adjoint of linear transformation, Unitary operators, Self adjoint, Normal operators, Spectral theorem for self adjoint operators.	15 Hours		
Internal A	Assessment:			
CIA*-1	Unit -I			
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit II and Unit III			
EoSE**	Unit-I,II,III,IV			
	ous Internal Assessment f Semester Examination			
Text Bool	ks:			
1. H	offmann K. and Kunze R., 1992, <i>Linear Algebra</i> , Prentice Hall of India.			
2. Fi	iedberg S. H., Insel A.J., Spence L.E., 2019, <i>Linear Algebra</i> , Pearson Ed	ucation.		
3. K	umaresan S., 2000, Linear Algebra: A Geometric Approach, Prentice Hal	l of India.		
4. H	almos, P.R., 2011, Finite Dimensional Vector Spaces, Springer.			
5. La	5. Lang, S., 2005, Introduction to Linear Algebra, Springer.			

Reference Books:

- 6. Artin M., 2010, Algebra, Pearson Education.
- 7. Cooperstein B., 2015, Advanced Linear Algebra, CRC Press.

E-resources:

https://archive.nptel.ac.in/courses/111/106/111106051/

<u>Course-Code: MAT402</u> <u>Course Title: Real Analysis</u>			
Teaching Sch	neme	Examination Scheme	Credits Allotted
Theory: 3 hou	urs/ week	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3
Tutorial: 1 Hour/Week			Tutorial: 1
			Total: 4
Course Prere	equisite:		
	Basics of real analysis, metric space and integral and differential calculus.		
Course Obje	Course Objectives: To develop the concept of		
1. understanding and applications of different aspects of the real number system \mathbb{R} , in the Euclidean space \mathbb{R}^n .			

2.	Riemann-Stieltjes integrability, properties of R-S integration and its applications.		
3.	uniform convergence of sequence and series of functions, solving problems and their applications.		
4.	bounded variation functions and their basic properties, development of derivatives as a linear transformation and understanding of important associated results.		
Course Outco	omes: Students will be able to		
1.	understand and analyze the different aspects of \mathbb{R} , in \mathbb{R}^n al	ong with their applications.	
2.	solve the problems of Riemann-Stieltjes integration and will be able to apply/verify its properties.		
3.	understand and apply the tests of uniform convergence of sequence and series of functions along with solving problems.		
4.	verify the conditions of bounded variation functions along with applications, understand the concept of derivatives as linear transformation in \mathbb{R}^n and know about the important associated results.		
Course Conte	ent:		
Unit-I	Introduction to Euclidean space, Open ball, Open and closed sets, Adherent points, accumulation points and isolated points, Closure and derived sets, Bolzano Weierstrass theorem, Cantor intersection theorem, Lindeloff covering theorem, Heine-Borel theorem, Compactness in \mathbb{R}^n , Compact subsets of a metric space.	15 Hours	
Unit-II	Basics of Riemann-Stieltjes (R-S) integration, Existence of R-S integration, Conditions of R-S integrability, Properties of R-S integrals, First and	15 Hours	

	1	1
	second mean value theorems, Some important results on R-S integrability.	
Unit-III	Introduction to sequence and series of functions, Concept of pointwise and uniform convergence, Important tests for uniform convergence of a sequence and series of functions, Uniform convergence and continuity, Uniform convergence and integration, Uniform convergence and differentiation, Uniform convergence and R-S integration. Term by term differentiability and term by term integrability of series.	15 Hours
Unit-IV	Functions of bounded variations and its properties, total variations. Continuity, partial derivatives, differentiability, derivatives of functions in an open set of \mathbb{R}^n into \mathbb{R}^n as a linear transformations, chain rule, Jacobians and its properties. Introduction to important theorems such as Inverse function theorem, Implicit function theorem etc.	15 Hours
Internal Ass	essment:	•
CIA*-1	Unit I	
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit II and Unit III	
EoSE**	Written Exam. for Unit-I, II, III, & IV	
	s Internal Assessment emester Examination	1
Text Books:		
Corre 2. Malil Delhi	Asundaram, D. and Chaudhary, B., 2018, <i>A First Course</i> ected Edition), Narosa Publishing House, New Delhi. & S. C. and Arora S, 2017, <i>Mathematical Analysis</i> , New i. A, S.K., 2019, <i>Introduction to Real Analysis</i> , Levant Books,	Age Int. Ltd. Publishers, New
Reference	ee Books:	
1. Rudin Editio	n W., 2016, <i>Principles of Mathematical Analysis</i> (3rd Econ.	l.), McGraw Hill International

2.	Apostol T. M., 1996, Mathematical Analysis (2nd Ed.), Narosa Publishing House, New Delhi.
E-res	ources:
3. 4.	https://nptel.ac.in/courses/111106053 https://nptel.ac.in/courses/111106153

	Course Code: MAT403		
		<u>Course Title:</u> Topology	
Teaching	Scheme	Examination Scheme	Credits Allotted
Theory: 3	hours/ week	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3
Tutorial: 1	l Hour/Week		Tutorial: 1
			Total: 4
Course P	rerequisite: The st	udent should have knowledge of	
1.	Basic concepts of sets, relations		
2.	. Basic concepts of functions and congruences		
Course O	bjectives:		
1	To provide motiv	ation for topology through geometry.	
2	2 To develop understanding of geometric and topological properties.		
3	3 To develop understanding of the concepts of general topology as simply as possible.		nply as possible.
Course O	Course Outcomes: The students will be able to understand		

1.	what are objects of study in topology and geometry?	
2	students will absorb the concepts and topics in hand without haste;	
3	students will be able to understand the significance of the concept theorems proved here;	pts defined and the
4	The course will serve as a foundation for further study in analysis, in ge algebraic topology.	ometry and in
Course C	ontent:	
Unit-I	Topological spaces. Open sets, closed sets. Interior points, Closure points. Limit points, Boundary points, Exterior points of a set, Closure of a set, Derived set, Dense subsets. Basis, sub base, Relative topology.	15 Hours
Unit-II	Product space, Quotient space. Continuous functions, open & closed functions, homeomorphism, Lindelof space, Separable spaces, Connected Spaces, locally connectedness, Connectedness on the real line, Components, Path connected space,	15 Hours
Unit-III	Complete space, Compact Spaces, one point compactification, compact sets, properties of Compactness and Connectedness under a continuous function, Compactness, Equivalence of Compactness.	15 Hours
Unit-IV	Separation Axioms: T0, T1, and T2 spaces, examples and basic properties, First and Second Countable Spaces, Regular, normal, T3 & T4 spaces, Tychnoff spaces, Urysohn ^{**} s Lemma, Tietze Extension Theorem, Tychnoff Theorem.	15 Hours
Internal A	Assessment:	
CIA*-1	Unit -I	
		L

CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit II and Unit III
EoSE**	Unit-I,II,III,IV
	ous Internal Assessment Semester Examination
Text Book	35:
1. Sir	mmons G. F., 1963, Topology and Modern Analysis, McGraw Hill.
2. Vie	cker, 1996, Topology via Logic, Cambridge University Press.
3. Mı	unkers, J. R., 2015, Topology- A First Course, Pearson Education India.
	shi K. D., 2017, <i>Introduction To General Topology</i> , New Age International Private Limited, d Ed.
Reference	Books:
5. Ke	elley J. L., 2017, General Topology, Dover Publications Inc.; Reprint edition.
E-resource	es:
1. http	ps://archive.nptel.ac.in/courses/111/106/111106159/

	<u>Course-Code: MAT404</u> <u>Course Title: Complex Analysis</u>				
Teachir	ng Scheme	Examination Scheme	Credits Allotted		
Theory:	3 hours/ week	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3		
Tutorial	: 1 Hour/Week		Tutorial: 1		
			Total: 4		
Course	Prerequisite:		I		
1	The student should have knowledge of complex numbers and their properties, basic foundation of real analysis and concepts of limit, continuity and differentiability for functions of complex variables.				
Course	Objectives:				
1.	To introduce so	me topics of contemporary complex analysis			
2.	To provide a so interesting direct	lid, classical foundation for the subject whi tions.	le exposing trails leading off in		
3.	· ·	student to work independently in these to plex analysis in other areas of mathematics.	opics and especially to use the		
Course	Outcomes: Studen	ts will be able to			
1.		echniques of contemporary complex analysis rmonic analysis, univalent functions theory a			

2.	evaluate integrals along a path, compute the Taylor and Laurent expansions, determine the nature of the singularities and calculating residues.			
3.	use of residue theorem to evaluate integrals.			
Course C	ontent:			
Unit-I	Functions of a complex variable, Differentiability and Analyticity, Harmonic Functions, Contour integrals, Antiderivative, Cauchy theorem, Cauchy-Goursat theorem, Simply and multiply connected domains, Cauchy integral formula, Higher order derivatives, Morera's theorem.	15 Hours		
Unit-II	Cauchy's inequality, Liouville's theorem, Fundamental theorem of algebra, Maximum modulus principle, Minimum modulus principle, Taylor's series, Laurent series, Absolute and uniform convergence of power series, Weierstrass theorem for sequence of functions. Removable singularities, poles, order and singular part of a pole, Laurent expansions, essential singularities.	15 Hours		
Unit-III	Cauchy residue theorem, Residue at infinity, Evaluation of integrals, Definite integrals involving sines and cosines, Zeros of analytic functions, Uniqueness theorem, Zeros of polynomials, Argument principle, Rouche's theorem, Schwarz lemma, Schwarz-Pick lemma, Open mapping theorem.	15 Hours		
Unit-IV	Conformal mappings, Scale factor, Local inverses, Mappings by elementary functions, Bilinear transformation, Basic properties of Bilinear transformation, Fixed points, Cross-ratio, Mappings of half planes onto disks, Automorphisms of unit disk, Automorphism of half planes, Mappings by $w=log z$, Mappings by $w=sin z$, Mappings by z^2 and branches $\frac{1/2}{2}$ of z^2 .	15 Hours		
Internal	Assessment:			
CIA*-1	Unit -I			
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit-II and III			
EoSE**	Unit-I,II,III,IV			
	*: Continuous Internal Assessment **: End of Semester Examination			

Text Books:

- 1. Brown J.W. and Churchill R.V., 2009, *Complex Variables and Applications*, Tata McGraw Hill.
- 2. Ponnusamy S., 2005, Foundations of Complex Analysis, Narosa Publication House.
- 3. Kasana H.S., 2005, Complex Variables: Theory and Applications, PHI.

Reference Books:

1. Rudin W., 2006, Real and Complex Analysis (3rd Addition), Tata McGraw Hill.

E-resources:

1. https://archive.nptel.ac.in/noc/courses/noc21/SEM2/noc21-ma39

<u>Course-Code: MAT405</u> Course Title: Mathematical Programming				
Teaching Sch	ieme	Examination Scheme	Credits Allotted	
Theory: 3 hours/ week		EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3	
Tutorial: 1 Hour/Week			Tutorial: 1	
			Total: 4	
Course Prere	Course Prerequisite: The student should have knowledge of			
1.	basic Concepts of Linear Algebra			
2.	basic Concepts of Calculus			
Course Obje	Course Objectives:			
1	1 To teach the students the skills to formulate real-world problems as linear and nonlinear programs,			
2	To teach the students the theoretical principles of linear programming problems.			

3	To introduce different types of methodologies to solve linear programming problems, e.g., simplex method, dual simplex method, revised simplex method, branch and bound method, cutting plane method.		
4	To teach how to handle multi objective optimization problems.		
5.	To introduce the concept of dynamic programming		
6.	To introduce the concepts of nonlinear programming and	its underlying structure.	
Course Ou	tcomes: The students will be able to understand		
1.	the theoretical foundations of simplex and revised simplex	a method.	
2	duality in LPP and Integer LPP.		
3	how to solve an optimization problem over recursion and a multi objective optimization problem.		
4	solution methodologies of nonlinear programming problems, specifically convex programming problems and quadratic programming problems.		
Course Co	ntent:		
Unit-I	Review of Linear Programming Problems-Graphical Method and Simplex Method, Theoretical foundation of Simplex Method, Revised Simplex Method,	15 Hours	
Unit-II	Duality in linear programming problem, Primal-dual method, Duality theorems, Dual simplex method; Post optimality analysis. Integer Linear programming, Gomory's Cutting Plane Method, Branch & Bound Method, Integer Programming Duality,	15 Hours	
Unit-III	Dynamic Programming, Bellman's principle of optimality, Applications of dynamic programming, Multi-objective optimization problem, Goal Programming. Nonlinear programming, Solution of nonlinear programming problems with equality	15 Hours	

	constraints and with not all equality constraints.
Unit-IV	Convex Programming Problem, Constraint qualification, Lagrange Multiplier method, Kuhn-Tucker necessary and sufficient conditions for optimality of the objective function in NLPP. Quadratic programming, Wolfe's method and Beale's Method, Separable Programming.
Interna	al Assessment:
CIA*-1	Unit -I
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit II and Unit III
EoSE**	* Unit-I, II, III, IV
	inuous Internal Assessment I of Semester Examination
Text B	ooks:
3. 4.	Chandra S., Jayadeva and Mehra A., 2009, <i>Numerical Optimization with Applications</i> , Narosa Publishing House Pvt. Ltd. Hadley G., 1987, <i>Linear Programming</i> , Narosa Publishing House Pvt. Ltd. Taha H. A., 2007, <i>Operations Research-An Introduction</i> , Prentice Hall of India Pvt. Ltd. Hillier F. S., Lieberman G. J., Nag B. and Basu P., 2012, <i>Introduction to Operations Research</i> , Tata McGraw Hill Education Pvt. Ltd. Bazaraa M.S., Sherali H.D. and Shetty C.M.,2006, <i>Nonlinear Programming Theory and</i> <i>Algorithms</i> , Wiley.
Refere	nce Books:
1. 2.	Bertsimas D. and Tsitsiklis J.N., 1997, <i>Introduction to Linear Optimization</i> , Athena Scientific, Belmont, Massachusetts. Bradley, H., Magnanti, 1977, <i>Applied Mathematical Programming</i> , Addison-Wesley

E-resources:

- 1. https://onlinecourses.swayam2.ac.in/cec22_ma17/
- 2. https://archive.nptel.ac.in/courses/111/107/111107128/

<u>Course-Code:</u> MAT406 <u>Course Title:</u> Abstract Algebra						
Teaching	Feaching Scheme Examination Scheme Credits Allotted					
Theory: 3	hours/ week	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3			
Tutorial: 1	Hour/Week		Tutorial: 1			
			Total: 4			
Course P	rerequisite: The st	udent should have knowledge of				
1.	Basic Concepts o	f groups and rings				
Course O	bjectives:					
1	To teach the students isomorphism theorems					
2	To teach the students the Sylow theorems					
3	To teach the students the properties of rings					
4	To teach the students Chinese remainder theorem					
Course O	utcomes: The stud	ents will be able to understand				
1.	the concepts of group action					
2	The class equatio	n of groups				
3	The properties of solvable groups					

4	The arithmetic in rings	
Course C	ontent:	
Unit-I	Review of groups and properties, First and second Isomorphism theorems, Conjugacy relation, Group Action, Equivalent formulation of action as a homomorphism of G to Symmetric group, Stabilizer (Isotropy) subgroups	15 Hours
Unit-II	Orbit decomposition, Class equation of an action, Conjugacy class equation, Transitive actions, core of a subgroup, Sylow subgroups, Sylow's Theorem I, II and III, p-groups and applications, Direct and inverse images of Sylow subgroups, Commutator subgroup, Normal and subnormal series, composition series, Jordan-Holder theorem.	15 Hours
Unit-III	Solvable groups, Properties of solvable groups, Simple groups, simplicity of An, Review of Rings and properties, Left and right ideal, prime ideals, maximal ideals, Prime and irreducible elements, Divisibility in an Integral Domain, Units and Associates, Irreducible elements	15 Hours
Unit-IV	Greatest Common divisor, Least Common Multiple, Euclidean domains, Maximal and prime ideals, Principal ideal domains, Divisor chain condition, Unique factorization domains, Examples and counterexamples, Chinese remainder theorem for rings and PID's, Polynomial rings over domains, Unique factorization in polynomial rings over UFD's.	15 Hours
Internal A	Assessment:	
CIA*-1	Unit -I, II	
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit III	
EoSE**	Unit-I,II,III,IV	
	uous Internal Assessment f Semester Examination	

Text Books:

Bhattacharya P. B., Jain S. K. and Nagpal S. R., *Basic Abstract Algebra (2nd Ed.)*, Cambridge University Press.

Gallian J. A., 1999, Contemporary Abstract Algebra, Narosa Publication House, New Delhi.

Artin M., 2011, *Algebra*, Prentice Hall India, New Delhi.

Dummit D. S. and Foote R. M., 2008, Abstract Algebra, Wiley India Pvt. Ltd.

Reference Books:

Robinson, D. J. S., 1996, A Course in the Theory of Groups, Springer New York, New York

E-resources:

https://archive.nptel.ac.in/courses/

<u>Course-Code: MAT407</u> Course Title: Qualitative Theory of Ordinary Differential Equations				
Teaching Scheme Examination Scheme Credits Allotted				
Theory: 3 hours/ week	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3		

Tutorial: 1 Hour/Week			Tutorial: 1
			Total: 4
Course]	Prerequisite: The stud	lent should have knowled	ge of
1.			l Analysis e.g., continuity, uniform continuity, uations, matrices, diagonalization
2.	elementary theo	ory of ordinary differential	equations
Course	Objectives:		
1.	To introduce the differential equ		d uniqueness theory of IVPs and system of
2	To teach differe	ent types of boundary conc	litions and boundary value problems
3.	To introduce st	ability theory of linear and	l nonlinear differential equations.
4.		me of the methods used lutions of differential equa	to explore qualitative information about the ations
Course	Dutcomes: The stude	nts will be able to	
1.	explain differer	t existence and uniquenes	s theorems for initial value problems
2.	Learn how to s	olve a given boundary val	ue problem
3.	To use differer of a given diffe		cal methods to analyze the stability of solutions
4.	use qualitative	heory for modeling differ	ent real life problems via differential equations
Course	Content:		

Unit-I	General existence and uniqueness theory: Well- posedness and examples of Initial Value Problems (IVPs), Gronwall's lemma, Basic lemma and uniqueness theorem, Picard's existence and uniqueness theorem, Cauchy Peano existence theorem, Continuation of solutions.	15 Hours
Unit-II	System of linear differential equations: existence and uniqueness theorem, homogeneous linear systems, Non- homogeneous linear system, Linear systems with constant coefficients, General system and diagonalization.	15 Hours
Unit-III	Boundary-value problems (BVPs): Different types of Boundary conditions and examples of BVPs, Green's functions, Sturm-Liouville BVPs: Characteristic values and characteristic functions, Orthogonality of characteristic functions,Expansion of a function in a series of orthonormal functions. System of nonlinear differential equations	15 Hours
Unit-IV	Autonomous system, equilibrium points and their stability, Paths of autonomous linear systems, Paths of nonlinear systems, Lyapunov functions and their construction, Limit cycles and Periodic solutions, Poincare-Bendixson theory.	15 Hours
Internal Asse	essment:	
CIA*-1	Unit -I	
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit II and III	
EoSE**	Unit-I,II,III,IV	
	Internal Assessment mester Examination	
Text Books:		
1. Ross	S.L., 2007, Differential Equations, Wiley.	

- 2. Nandakumaran A.K., Dutti P.S. and George R.K., 2017, Ordinary Differential Equations: Principles and Applications, Cambridge University Press.
- 3. Brauer F. and Nohel J.A., 2005, *Qualitative Theory of Differential Equations*, Dover Publications.
- 4. Coddington E.R. and Levinson N., 2010, *Theory of Ordinary Differential Equations*, McGraw Hill Education.

Reference Books:

5. Nemytskii V.V., 2005, *Qualitative Theory of Differential Equations*, Princeton University Press

E-resources:

https://nptel.ac.in/courses/111108081

LEVEL-4 (Electives)					
S. No.	Course Code	Course Title	Credit	Remarks	
1	MAT431	Biomathematics	4		
2	MAT432	Probability and Mathematical Statistics	4		
3	MAT 433	Scientific Writing by LaTeX	2		
4	MAT434	Basic Programming in MATLAB	2		
5	MAT435	Numerical Analysis	4		
6	MAT436	Integral Transforms	4		
7	MAT437	Elementary Number Theory	4		

8	MAT438	Introduction to Space Dynamics	4	
9	MAT439	Fluid Dynamics	4	

	Course-Code: MAT-431 Course Title: Biomathematics				
Teach	ing Scheme	Examination Scheme	Credits Allotted		
Theor	y: 3 hours/ week	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3		
Tutori	al: 1 Hour/Week		Tutorial: 1		
			Total: 4		
Cours	se Prerequisite: The	student should have knowledge of	I		
1.	basic concepts	in elementary Calculus and Linear Algebra			
Cours	se Objectives:				
1	To introduce basic principles, assumptions and hypotheses for mathematical formulations different biological systems		or mathematical formulations of		
2		To teach the students the mathematical modeling of growth of single species and interacting populations			
3	To introduce th	e compartmental epidemic models e.g., SIR,	SEIR and SIS		
4		To discuss the dynamical analysis of different models using linearization, stability analysis and bifurcation theory			
5	To introduce the modeling of chemical kinetics				
Cours	se Outcomes: The st	udents will be able to			
1.	use results from differential equations, dynamical systems, bifurcation and stability theory				

	to analyze a given biological system		
2.	model a particular biological system and to predict its different dynamical behaviour		
3.	learn modeling and analysis of single species and interacting population	models	
4.	do modeling and analysis of different compartmental epidemic models		
5.	to predict the disease burden and prevalence of a particular disease, long term persistence of a species		
Course C	ontent:		
Unit-I	Introduction: Goals and Challenges of mathematical modeling in biology. Idealization and general principles of model building, Different types of mathematical models in biology, Bacterial growth, Relevant mathematical techniques: Non-dimensionalization, Steady states and linearization	15 Hours	
Unit-II	Review of linear systems, Stability analysis, Phase diagrams, Single Species population models (discrete and continuous): Exponential, Logistic, and Gompertz growth, Allee effect, Harvesting models and bifurcations, Delay models	15 Hours	
Unit-III	Models with interacting populations: Different types of interactions and examples, Lotka Volterra Competition, Predator-prey model, Chemostat models, Structured (spatial, age and sex) population models, Population biology of infectious diseases: Classification of infectious diseases, SIR, SIRS and SIS epidemic models,	15 Hours	
Unit-IV	Basic reproduction number, Models for molecular events: Michaelis- Menten enzyme example, Timescale decomposition, Quasi steady state analysis, sigmoidal functions, multisite systems, Chemical kinetics: Mass action law, Hopf-bifurcations, Subcritical Hopf, Poincare-Bendixson-I, Poincare-Bendixson-II, Index Theory.	15 Hours	

Internal Assessment:				
CIA*-1	Unit -I			
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit II and III			
EoSE**	Unit-I, II, III, IV			
	ous Internal Assessment Semester Examination			
Text Bool	xs:			
	rauer F. and Chavez C. C., 2000, Mathematical Models in Population of the provide miology, Springer.	ulation Biology and		
2. K	ot M., 2001, Elements of Mathematical Ecology, Cambridge University F	Press.		
3. Ko	eshet L. E., 2005, Mathematical Models in Biology, SIAM.			
	eeling M. J. and Rohani P., 2008, <i>Modeling Infectious Diseases in He</i> inceton University Press.	umans and Animals,		
5. M	artcheva M., 2010, An Introduction to Mathematical Epidemiology, Sprin	nger.		
Reference	Books:			
7. Sr	urray J. D., 2007, Mathematical Biology: An Introduction, Springer. nith H., 2010, An Introduction to Delay Differential Equations with iences, Springer.	Applications to Life		
E-resourc	es:			
https://open.uci.edu/courses/math_113b_intro_to_mathematical_modeling_in_biology.html				
https://ww	https://www.youtube.com/playlist?list=PL5zWDs2j0YF3kPPvs4L5FGlLc7x13Uwjn			

<u>Course-Code: MAT432</u> <u>Course Title: Probability Theory and Mathematical Statistics</u>				
Teaching	Scheme	Examination Scheme	Credits Allotted	
Theory: 3	hours/ week	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3	
Tutorial: 1	Hour/Week		Tutorial: 1	
			Total: 4	
Course Pr	erequisite: The st	udent should have knowledge of		
1.	basic concept	s of linear algebra and calculus		
Course Ol	bjectives:			
1.	-	e type of the data and tabulate statistical i se graphical techniques to interpret.	nformation given in descriptive	
2.	^	To discuss probability, probability distributions, joint probability distributions an concepts associated with a random variable.		
3.	To explain es	To explain essential tools for statistical analyses.		
4.	To discuss cer	To discuss central limit theorem and order statistics.		
Course Or	utcomes: Students	will be able to		
1.	learn descript	tive statistics and to calculate probability for	or various types of problems.	
2.	work out varie	ous probability distributions and statistical	tools.	
3.	explain order	explain order statistics and central limit theorem		
Course Co	ontent:			
Unit-I	whisker plots Experiment a function on a	lata analysis: summary statistics, box and , histogram, P-P and Q-Q plots. Random nd its sample space, probability as a se collection of events, stating basic axioms bles, c.d.f., p.d.f., p.m.f.	1 t	

Unit-II	absolutely continuous and discrete distributions, Some common distributions (Negative Binomial, Pareto, lognormal, beta, etc). Transformations, moments, m.g.f., p.g.f., quantiles and symmetry. Random vectors, Joint distributions, copula, joint m.g.f. mixed moments, variance covariance matrix.	15 Hours	
Unit-III	Independence, sums of independent random variables, conditional expectation and variances, compound distributions, prior and posterior distribution, best predictors. Sampling distributions of statistics from univariate normal random samples, chi-square, t and F distributions.	15 Hours	
Unit-IV	Order statistics and the distribution of rth order statistics, joint distribution of rth and sth order statistics. Statement and application of central limit theorem for a sequence of independent and identically distributed random variables.	15 Hours	
Internal Ass	essment:		
CIA*-1	Unit -I		
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit II and Unit III		
EoSE**	Unit-I, II, III, IV		
	s Internal Assessment emester Examination		
Text Books:			
 Sheldon R.M., 2010, Introductory Statistics, Academic Press. Rohatgi V.K. and Md. Ehsanes Saleh A.K., 2015, An Introduction to Probability and Statistics (3rd Ed.), John Wiley & Sons. Rao C. R., 1965, Linear Statistical Inference and its Applications (2nd Ed.), John Wiley & Sons, INC. Dharmaraja S. and Das D., 2018, Introduction to Statistical Methods, Design of Experiments and Statistical Quality Control, Springer. Mayer P. L., 1970, Introductory Probability and Statistical Applications, Addison-Wesley. 			

Reference Books

6. Feller W., 2000, An Introduction to Probability Theory and its Applications (3rd Ed.), Wiley Eastern.

E-resources:

- 1. https://archive.nptel.ac.in/courses/111/105/111105090/
- 2. https://archive.nptel.ac.in/courses/111/102/111102160/

<u>Course-Code: MAT433</u> <u>Course Title: Scientific Writing by LaTeX</u>			
Teaching Sch	ieme	Examination Scheme	Credits Allotted
Theory: 1 hou	nrs/ week	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 1
Practical: 2 H	ours/Week		Practical: 1
			Total: 2
Course Prere	equisite: The st	udent should have knowledge of	
	Basic computer skills to downloads the required files and programmes needed for the course		programmes needed for the
Course Objectives:			
1.	Installation of scientific typing tools and writing environment to create documents		nent to create documents
2.	To introduce typing tools e.g., LaTeX, Open office		
3.	To introduce different commands and mathematical symbols		

4.	To discuss the use of template to create impressive documents for Master and PhD thesis		
5.	To make students learn how to write equations, plot graphs, and prepare presentations.		
Course Ou	tcomes: Students will be able to		
1.	learn how to create a scientific document		
2.	write equations, letters and do different types of mathematic	tical calculations	
3.	include Tables, Figures and Plots in a documents		
4	create professional presentations		
5.	cite a paper and build Bibliography		
Course Co	ntent:		
Unit-I	Installing LateX and Class files, Creating first LaTeX document, creating documents in overleaf, Basic document spacing, Basic typesetting	11 Hours (4 Hours Theory and 7 Hours Practical)	
Unit-II	mathematical Symbols and Commands, Writing of simple article, letters and applications, Mathematical symbols and commands, arrays, formulas and equations, Spacing, Borders and Colors	11 Hours (3 Hours Theory and 8 Hours Practical)	
Unit-III	Figure environments, Subfigures, Tables, LateX presentations using Beamer, Creating different templates, Preparation of template of thesis and books	11 Hours (4 Hours Theory and 7 Hours Practical)	
Unit-IV	Poster and CV templates, Pictures and Graphics, Bibliography, Writing of research articles and reports etc.	12 Hours (4 Hours Theory and 8 Hours Practical)	
Internal As	ssessment:	I	
CIA*-1	Unit -I		
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce		
EoSE**	Unit-I, II, III and IV		

*: Continuous Internal Assessment **: End of Semester Examination

Text Books:

- 1. Lamport, L.W., 1994, *LaTeX: A document Preparation Systems*, Addison-Wesley Publishing Company.
- 2. Kopka, H., Daly, P.W., 2004, *Guide to LaTeX*, Fourth Edition, Addison Wesley.

Reference Books:

1. Shirore C., A *Beginner guide to LaTeX*, Lullu.com

E-resources:

- 1. <u>https://www.udemy.com/course/become-a-good-latex-user-to-create-professional-documents/</u>
- 2. <u>https://www.overleaf.com/learn</u>

Course-Code: MAT434 Course Title: Basic Programming in MATLAB			
Teaching Scheme	Examination Scheme	Credits Allotted	
Theory: 1 hours/ week	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 1	
Practical: 2 Hours/Week		Practical: 1	
		Total: 2	
Course Prerequisite: The student should have knowledge of			
Basic computer skills to download the required files and programmes needed for the		nd programmes needed for the	

	course	
Course Ob	ojectives:	
1.	To introduce students to computational methods using MA	ATLAB
2.	To teach the basis of computational techniques for equations	solving ordinary differential
3.	To introduce the use of MATLAB for numerical integration	on and interpolations
4.	To discuss different types of plotting (2D, 3D, contour etc	c.) using MATLAB
Course Ou	itcomes: Students will be be able to	
1.	Learn different environment of MATLAB	
2.	do symbolic computations using MATLAB	
3.	solve a system of differential equations via MATLAB	
4.	Learn different types of plotting namely, 2D, 3D, contour etc.	
5.	do numerical integration and interpolation with unequal intervals	
Course Co	ontent:	
Unit-I	The MATLAB Environment, MATLAB Basics: Variables, Numbers, Operators, Expressions, Input and output, Vectors, Arrays: Matrices. Built-in Functions and User defined Functions, Files and File Management: Import/Export, Basic 2D, 3D plots, Graphic handling, Use of MATLAB in Matrix Addition, multiplication, subtraction. Symbolic Calculation- symbols, differentiation, integration, etc. Conditional Statements, Loops.	15 Hours
Unit-II	MATLAB Programs: Programming and Debugging. Mathematical Computing with MATLAB-Algebraic equations. Basic Symbolic Calculus and Differential equations, Ordinary Differential Equations: A first order and first degree ODE. Interpolation with equal Interval: Newton – Gregory forward and backward interpolation formula. Numerical Integration: Trapezoidal method, Numerical Integration: Simpson method (1/3 and 3/8).	15 Hours
Internal A	ssessment:	
CIA*-1	Unit -I	
		1

CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce
EoSE**	Unit-I, II
	us Internal Assessment Semester Examination
Text Books	:
1. Prata	ap R., Getting started with MATLAB, Oxford University Press.
2. S. L <u>y</u>	ynch, 2014, Dynamical Systems with Applications using MATLAB, Birkhäuser.
3. Fouset	tt, L.V., 2007, Applied Numerical Analysis using MATLAB, Pearson Education
4. Chapa	ra S.C., Canale, R.P., 2006, Numerical Methods for Engineers, McGraw Hill
Reference E	Books:
Gilat A, 2	2012, MATLAB: An Introduction with Applications, Wiley
E-resources	3:
<u>http</u> :	s://onlinecourses.nptel.ac.in/noc20_ge05/preview

<u>Course-Code: MAT435</u> <u>Course Title: Numerical Analysis</u>

Teac	hing Scheme	Examination Scheme	Credits Allotted
Theory: 3 Hours/Week		EoSE: 60 Marks Internal Assessment: 40 Marks	Theory:3
Tuto	rial: 1 Hour/Week		Tutorial: 1
			Total: 4
Cou	rse Prerequisite: The s	students should have knowledge of	
1.	differential calculus		
2.	difference operator, (ODE	
Cou	rse Objectives:		
1	To introduce different numerical methods and their error to solve systems of linear equation nonlinear equations, initial value problems and eigenvalue problems.		-
2	to analyze the notion o	f interpolation and approximation.	
3	To provide the numeric	cal treatment for the BVP governed by C	DE
Cou	rse Outcomes: The stu	dents will be able to	
1	apply a finite differe for the given discrete	nce method to find the interpolation data values.	, differentiation and integration
2	analyze and choose the best suitable numerical method for the given mathematical problem.		od for the given mathematical
3	apply the numerical techniques to solve research problems of fluid dynamics mathematical modeling.		
Cou	rse Content:		
Unit-I Introduction to significant digits and errors, Solution of system of linear Equations (direct methods, Iterative methods, Ill-conditioned systems), Eigenvalue problem: Gershgorin circle theorem, power method, Jacobi method, Householder method.		ds, Ill-conditioned	

Unit-II	Jnit-II Finite difference operators, difference tables, Lagrange interpolation, Newton's divided difference interpolation, Hermite interpolation, Cubic spline interpolation.	
Unit-III	Unit-III Numerical solution of ordinary differential equations: initial value problems, existence and uniqueness of the solution of initial value problem, Single step methods- Taylor series, Picard's method, Euler's method, modified Euler method, Runge-Kutta method, Multi-step methods: Predictor-corrector method, Stability Analysis.	
Unit-IV	Boundary value problems (BVPs), Methods to solve BVPs: Finite- difference method, The Shooting method, The Cubic Spline method.	15 Hours
Internal A	Assessment:	
CIA*-I	Unit-I, II	
CIA*-II	Written Exams/ Quizzes/Assignment/Presentation/Viva-Voce	
EoSE**	Unit-I, II, III, IV	
	ous Internal Assessment f Semester Examination	
Text Bool	ks:	
1. At	kinson K. E., 1989, An Introduction to Numerical Analysis (2nd Ed.), Wiley-India.	
	n M. K., Iyengar S. R. K. and Jain R. K., 2012, <i>Numerical Methods for Scientific gineering Computation</i> (6 th Ed.), New Age International Publishers.	and
3. Sa	stry S. S. 2019, Introductory Methods of Numerical Analysis, PHI.	
Reference	ce Books:	
1. Bu	chaman J. I. and Turner P. R., 1992, Numerical Methods and Analysis, McGraw-J	Hill.
E-resourc	ces:	
https://ar	chive.nptel.ac.in/courses/111/107/111107105/	

<u>Course-Code: MAT436</u> <u>Course Title: Integral Transforms</u>						
Teaching Scheme		Examination Scheme	Credits Allotted			
Theory: 3 Hours/Week		EoSE: 60 Marks Internal Assessment: 40 Marks	Theory:3			
Tutor	ial: 1 Hour/Week		Tutorial: 1			
			Total: 4			
Cours	se Prerequisite: St	udents should have knowledge of				
1.	basic concepts of	basic concepts of Differential Calculus				
2.	basic concepts of	Integral Calculus				
Cours	se Objectives:					
1	To describe the ideas of Laplace transform, Fourier transform, Z-transform and Wavelet Transform					
2	To familiarize the students with the applications of the Laplace and Fourier transforms in the fields such as application of PDE, Digital Signal Processing, Theory of wave equations.					
3	To familiarize the students with the applications of the Z-transform to solve the difference equations.					
Course Outcomes: Students will be able to						
1	gain the idea that by applying the theory of Integral transform the problem from its original domain can be mapped into a new domain where solving problems becomes easier.					
2	apply these techniques to solve research problems of signal processing, data analysis and processing, image processing, in scientific simulation algorithms etc.					

3	ply these transform techniques to solve the physical problem governed by ODE, PDE d difference equations.						
Course Content:							
Unit-I	Laplace Transform-Definition and its properties, Laplace transform of some standard functions, Existence conditions for the Laplace Transform, Shifting theorems, Laplace transform of derivatives and integrals, Inverse Laplace transform and their properties.	15 Hours					
Unit-II	Laplace Transform—Convolution theorem, Initial and final value theorem, Laplace transform of periodic functions, error functions, Heaviside unit step function and Dirac delta function, Applications of Laplace transform to solve ODEs and PDEs.	15 Hours					
Unit-II	Fourier transforms: Fourier integrals, Fourier sine and cosine integrals, Complex form of Fourier integral representation, Fourier transform, Fourier transform of derivatives and integrals, Fourier sine and cosine transforms and their properties, Convolution theorem, Applications of Fourier transforms to Boundary Value Problems.	15 Hours					
Unit-IV	⁷ Z-Transform: Z-transform and inverse Z-transform of elementary functions, Shifting theorems, Convolution theorem, Initial and final value theorem, Application of Z-transforms to solve difference equations.	15 Hours					
Intern	al Assessment:						
CIA*-I	Unit-I, II						
CIA*-I	I Written Exams/ Quizzes/Assignment/Presentation/Viva-Voce						
EoSE*	^k Unit-I, II, III, IV						
*: Continuous Internal Assessment; **: End of Semester Examination							
Text B	ooks:						
	enath Debnath and Dambaru Bhatta, <i>Integral Transforms and Their Applicat</i> Francis group, 2014.	ions, Taylor					
2.John M. Wills, Integral Transforms in Applied Mathematics, Cambridge University Press, 2008.							

3. Murrey R Spiegal, Laplace Transforms (SCHAUM Outline Series), McGraw Hill, 1965.

Reference Books:

1. Hildebrand F. B., "Methods of Applied Mathematics", Courier Dover Publications, 1992.

E-resources:

https://nptel.ac.in/courses/111106111

<u>Course-Code:</u> MAT437 <u>Course Title:</u> Elementary Number Theory						
Teaching Scheme		Examination Scheme	Credits Allotted			
Theory: 3 hours/ week		EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3			
Tutorial: 1 Hour/Week			Tutorial: 1			
			Total: 4			
Course Pr	Course Prerequisite: Students should have knowledge of					
1.	basic concepts of sets					
Course Objectives:						
1	To teach the stude	ents integers and their properties				
2	To teach the students the congruences					
3	To teach the students the arithmetic functions					
4	To teach the students binary quadratic forms					

Course Outcomes: Students will be able to						
1.	Learn the concepts of linear Diophantine equation					
2	use the modular arithmetic					
3	learn the primitive root theorem					
4	discuss the binary quadratic forms					
Course C	Course Content:					
Unit-I	Division in integers, Greatest common divisor, Euclid's Algorithm, Linear Diophantine equations, Prime numbers, Fundamental Theorem of arithmetic, Distribution of primes, Greatest integer functions	15 Hours				
Unit-II	Congruence relation, Properties of Congruence relation, Linear Congruences, Solvability of Linear congruence, modular arithmetic, Residue classes and reduced residue classes, Fermat's little theorem, Wilson's theorem, Euler's theorem Chinese remainder theorem, Higher degree polynomial congruence, Polynomial congruence mod p^r	15 Hours				
Unit-III	Quadratic residues, Legendre Symbol, Primitive root theorem, Arithmetic functions $\Box(\Box)$, $\Box(\Box)$, $\Box(\Box)$, $\Box(\Box)$, Ring of Arithmetic functions, Multiplicative arithmetic functions, Möbius inversion formula, Perfect numbers	15 Hours				
Unit-IV	Representation of an integer as a sum of two and four squares, Diophantine equations $x^2+y^2=z^2$ and $x^4+y^4=z^4$. Binary quadratic forms and Equivalence of quadratic forms, Farey sequences	15 Hours				
Internal Assessment:						
CIA*-1	Unit -I, II					

CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on III
EoSE**	Unit-I,II,III,IV
	tous Internal Assessment f Semester Examination
Text Boo	ks:
В	urton D. M., 1989, Elementary Number Theory, Wm. C. Brown Publishers, Dubuque, Iowa.
Jo	ones G.A. and J.M. Jones , 1998, <i>Elementary Number Theory</i> , Springer-Verlag, New York
Si	erpinski W., 1998, Elementary Theory of Numbers, North-Holland, Ireland.
K	oshy T., 2007, Elementary Number Theory with Applications, Academic Press, New York.
Reference	e Books:
	uckerman N.S.H. and Montgomery L.H., 1991, An Introduction to the Theory of Numbers, ohn Wiley.
E-resour	ces:
https://a	archive.nptel.ac.in/courses/
	11

<u>Course-Code: MAT438</u> <u>Course Title: Introduction to Space Dynamics</u>			
Teaching Scheme	Examination Scheme	Credits Allotted	

Theory: 3 hours/ week		EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3
Tutorial: 1 Hour/Week			Tutorial: 1
			Total: 4
Course Prere	equisite:		
	Basics of linea	ar algebra, analytical geometry, differential e	equations, and vector calculus.
Course Objec	ctive: To develo	op the concept of	
1.	kinematics o conservation l	f particles, understanding of different orb aws.	ital paths and elaboration of
2.	two body problems and its application in space and visualization of Kepler's laws of planetary motion.		
3.	existence of integrals in three-body problem, applications of stable equilibrium points of the restricted problem of three bodies and importance of the Jacobi integral.		
4.	rocket dynamics, performance measuring parameters and needs multi-stages rockets.		
Course Outco	omes: Students	will be able to	
1.	know about the kinematics of particles, understand about different orbital paths of particles and verify the conservation laws.		
2.	solve the two body problem, verify Kepler's laws of planetary motion and visualize the application of two body problems in space.		
3.	verify the existence of integrals in a three-body problem, determine and examine the stability of equilibrium points in the restricted problem of three bodies and know the importance of the Jacobi integral.		

4.	know about rocket dynamics, estimate the performance parameters and understand about the needs of optimized multi-stages rockets.			
Course Con	tent:			
Unit-I	Some basic definitions, Conservation laws, Newton's laws of motion, Kinematics of particles, Conic- section, Central force motion, Differential equation of orbit and its solution, Geometry of different kinds of orbits.			
Unit-II	Formulation of problem of two-body and equations of motion, relative equation of motion of two body problem, Solution of two body problem and its application. Kepler's law of planetary motion, Kepler's equation and its solution, Uniform rotating frame.	15 Hours		
Unit-III	Introduction of three body problem, Ten known integrals, Stationary solutions of three body problem and applications, Restricted problem of three body, Jacobi integral, prohibited regions of motion, collinear and noncollinear equilibrium points, Stability analysis of equilibrium points, Applications of restricted problem of three body in space.	15 Hours		
Unit-IV	Equation of variable mass, introduction of rocket theory, governing equation of a rocket, Single-stage rocket and its performance, Effect of gravity on the dynamics of a rocket, two-stage rocket and its performance, multi-stage rocket, Optimization of multi-stage rocket.	15 Hours		
Internal Ass	sessment:			
CIA*-1	Written Exam.			
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce			
EoSE**	Written Exam. for Unit-I, II, III, & IV			
*: Continuou	is Internal Assessment			

**: End of Semester Examination

Text Books:

- 1. McCuskey S. W., 1963, *Introduction to Celestial Mechanics*, Addison-Wesley Publishing Company.
- 2. Murray C. D., Dermott S.F., 2000, Solar System Dynamics, Cambridge University Press.
- 3. Rao K.S., 2009, Classical Mechanics, PHI Learning, Pvt. Ltd.
- 4. Goldstein H., Poole C.P. and Safko J.L., 2019, *Classical Mechanics* (Third edition), Pearson India Education Pvt. Ltd.
- 5. Battin, Richard H., 1999, An Introduction to The Mathematics and Methods of Astrodynamics, AIAA Education Series.

Reference Books:

- 1. Szebehely V., 1967, *Theory of orbits*. The restricted problem of three bodies, New York Acad. Press.
- 2. Thomson, William T., 1986, Introduction to Space Dynamics, Dover Publication, Inc. New York

E-resources:

https://nptel.ac.in/courses/101105029 https://nptel.ac.in/courses/101104078

<u>Course-Code: MAT-439</u> <u>Course Title: FLUID DYNAMICS</u>				
Teaching Scheme	Examination Scheme	Credits Allotted		
Theory: 3 Hours/week	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3		

Tutorial: 1	Hour/week	Tutorial: 1		
		Total: 4		
Course Pro	erequisite: Students should have knowledge of			
1.	basic concepts of differential equations.			
2.	basic concepts of calculus			
Course Ob	jectives: This course aims to learn			
1.	the basics characteristics of fluid, continuum hypothesis, kinematics of fluids.			
2.	the Eulerian and Lagrangian methods for fluid	l motion.		
3.	the Conservation Laws in different coordinate	systems and boundary conditions.		
4.	the irrotational and rotational flows			
5.	the solution process of simplified examples.			
Course Ou	tcomes: Students will be able to learn			
1.	the fluid properties, continuum hypothesis, strain rate tensor, streamline, path line, streak lines, stream function and vortex lines.			
2.	the stress tensor, symmetry of stress tensor, transformation of stress			
3.	the Eulerian and Lagrangian hypothesis and their differences.			
4.	the conservation law and their equations.	the conservation law and their equations.		
5.	the methods of implementing fluid dynamics laws.			
6.	a number of fundamental mathematical ideas and techniques for the solution of related problems.			
Course Co	ntent:			
Unit-I	Physical Properties of fluids. Concept of fluid density, specific weight, specific volume, kin and Lagrangian methods of description of flui and Lagrangian method, general motion of a and compatibility conditions,	ds, equivalence of Eulerian Hours		

Unit-II	Strain rate tensor, streamline, path line, streak lines, stream function, vortex lines, circulation. Stresses in Fluids: Stress tensor, symmetry of stress tensor, transformation of stress components from one coordinate system to another, principal axes and principal values of stress tensor, conservation of mass,15			
Unit-III	Conservation of momentum, Navier Stokes equation, conservation of moments of momentum, equation of energy, basic equations in different coordinate systems, boundary conditions.15			
Unit-IV	IV Irrotational and Rotational Flows : Bernoulli's equation, Bernoulli's 15 equation for irrotational flows, two dimensional irrotational Hours incompressible flows, Blasius theorem, circle theorem, sources and sinks, sources sinks and doublets in two dimensional flows.			
Internal A	ssessment:	·		
CIA-I*	Unit-I			
CIA-II	Written Exams/ Quizzes/ Assignment/ Presentations/ Viva-Voce based on Unit II and III			
EoSE**	Unit-I, II, III, IV			
	ous Internal Assessment Semester Examination			
Text Book	S:			
1. Rathy R.	K., 1976, An Introduction to Fluid Dynamics, Oxford and IBH Publishing	Co.		
2. Thomson	L. N. M., 1962, Theoretical Hydrodynamics, Macmillan and Co. Ltd.			
3. Chorlton	F., 1985, Textbook of Fluid Dynamics, CBS Publishers.			
4. Landau L. D., Lipschitz E.N., 1985, Fluid Mechanics, Pergamon Press.				
Reference	Books:			
1. Emanu	el, G. 2000, Analytical Fluid Dynamics, CRC Press.			
2. Nakayan Heinemann	ma, Y. and Boucher, R. F., 2000, Introduction to Fluid Mechanics, Butterw	vorth-		
E-resource	28:			
https://on	linecourses.nptel.ac.in/noc19_ce28/preview_			

LEVEL-5

Semester-IX (Int. M.Sc.)							
S. No.	Course Code	Course Title	Type of Course (C/E)	L	Т	Р	Credits
1	MAT501	Functional Analysis	CC	3	1	0	4
2	MAT502	Mathematical Modeling	CC	3	1	0	4
3	MAT503	MOOC (list will be provided)	CC	3	1	0	4
4		Elective Paper	DE	3	1	0	4
5	-	Elective Paper (Self Study)	DE	3	1	0	4
6	MAT504	Summer Internship (at least 6 weeks)	CC	3	1	0	4
Total				18	6	0	24
Semes	ter-X (Int.	M.Sc.)					
1	MAT581	Major Project Dissertation in Mathematics	AECC	0	0	16	16
3		Elective Paper	GE	3	1	0	4
2		Elective Paper	GE	3	1	0	4
	Total						24

<u>Course-Code: MAT501</u> <u>Course Title: Functional Analysis</u>			
Teaching Scheme	Examination Scheme	Credits Allotted	
Theory: 3 hours/ week	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3	

Tutorial	: 1 Hour/Week	Tutorial: 1		
		Total: 4		
Course	Prerequisite:			
	Basics of linear algebra, metric	e space and real analysis.		
Course	Objectives: To develop the concept of	f		
1.	the normed linear space and its	s completeness property.		
2.	elaboration of open mapping	linear transformation and operator in normed linear spaces and its properties along with elaboration of open mapping theorem, closed graph theorem, uniform boundedness principle, Hahn Banach theorem, and natural Embedding of normed linear spaces.		
3.	Hilbert spaces and its different properties, orthogonality and elaboration of Projection theorem, Bessel's inequality and Riesz's theorem.			
4.	different operators in a Hilber dimensional Hilbert space.	different operators in a Hilbert space and elaboration of spectral theorem on a finite dimensional Hilbert space.		
Course	Outcomes: Students will be able to			
1.	verify the conditions of normed	l linear space and test the completeness property		
2.	verify the different properties of linear transformation and operators and understand the open mapping theorem, closed graph theorem, uniform boundedness principle, Hahn Banach theorem, and natural Embedding of normed linear spaces.			
3.	recognize the different properties of Hilbert space and orthogonal sets and understand the Projection theorem, Bessel's inequality and Riesz's theorem.			
4.	learn about different operators and understand the spectral theorem on a finite			

	dimensional Hilbert space.			
Course Conto	ent:			
Unit-I	Normed linear spaces, Examples and properties, Equivalent norms, Convexity and completeness, Banach spaces, Examples and properties, 1^p spaces, L^p spaces, Function space, Quotient Space			
Unit-II	Operators on normed linear space, Continuous linear transformations, Bounded linear transformations, The open mapping Theorem, The closed graph theorem, The conjugate of an operator, The uniform boundedness principle, Hahn Banach Theorem, Embedding of normed spaces.	15 Hours		
Unit-III	Inner product spaces, Examples and properties, Hilbert spaces, Examples and properties, Polarization identity, Orthogonality, Orthogonal complements, Orthogonal Projection on Hilbert spaces, Projection theorem, Bessel's inequality, Riesz's theorem, Existence of orthogonal basis in Hilbert spaces.	15 Hours		
Unit-IV	The adjoint of an operator, Self adjoint operators, Normal and unitary operators, projections, Eigenvalues and eigenvectors of an operator on a Hilbert space, The spectral theorem on a finite dimensional Hilbert space.	15 Hours		
Internal Asse	essment:			
CIA*-1	Unit I			
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit II and III			
EoSE**	Written Exam. for Unit-I, II, III, & IV			
	Internal Assessment mester Examination			
Text Books:				

- 1. Bachman G. and Narici, 1964, Functional Analysis, Academic Press.
- 2. Taylor A. E., 1958, Introduction to Functional Analysis, John Wiley and Sons.
- 3. M.T. Nair, *Functional Analysis*: A first Course, Prentice Hall of India, New Delhi, 2002 (Second Printing: 2008)

Reference Books:

- 1. Simmons G. F., 1963, Topology and Modern Analysis, McGraw Hill.
- 2. Erwin Kreyszig E., 1978, Introductory Functional Analysis with Application, Wiley

E-resources:

https://nptel.ac.in/courses/111106047 https://nptel.ac.in/courses/111106147

	<u>Course-Code: MAT 502</u> <u>Course Title: Mathematical Modeling</u>				
Teaching Scheme		Examination Scheme	Credits Allotted		
Theory: 3 hours/ week		EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3		
Tutorial: 1 Hour/Week			Tutorial: 1		
			Total: 4		
Course Prere	equisite: Studer	nts should have knowledge of			
1.	basic concepts in Linear Algebra and Real Analysis and Differential Equations		Differential Equations		
Course Obje	Course Objectives:				
1.	To introduce students to the elements of the mathematical modeling process				

2.	To learn different types of mathematical models and their nature.		
3.	To exemplify the value of mathematics in problem solving	y 2	
4.	To develop students' capacity to solve problems through the use of mathematical models as a transferable process that will equip them to address novel problems in future.		
4.	To develop some of the methods used to explore qualitative information about the behaviour of solutions of differential equations		
Course Outco	omes: The students will be able to learn		
1.	the unique system characterization approach for a given sy	ystem	
2.	identify assumptions which are consistent with the context of the problem and which in turn shape and define the mathematical characterization of the problem		
3.	how to analyze a given model system using mathematical analysis results.		
4.	to revise and improve mathematical models so that they will better correspond to empirical information and/or will support more realistic assumptions		
2.	different types of mathematical models in ecology, epidemiology, chemistry, Physics, Life Sciences, Engineering etc.		
Course Cont	ent:		
Unit-I	Introduction to modeling. Definition of System, classification of systems, classification and limitations of mathematical models, Methodology of model building, modeling through ordinary differential equations:	15 Hours	
Unit-II	Linear growth and decay models, non-linear growth and decay models, Compartment models, Checking model validity, verification of models, Stability	15 Hours	

	analysis, Basic model relevant to population dynamics, Epidemics modeling.	
Unit-III	Ecology, Environment Biology through ordinary differential equation, Partial differential equation, Basic theory of linear difference equations with constant coefficients	15 Hours
Unit-IV	Mathematical modeling through difference equations in population dynamics, genetics, Markov chains model, Gambler's ruin model, Stochastic models, Monte Carlo methods.	15 Hours
Internal As	sessment:	
CIA*-1	Unit -I	
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit II and III	
EoSE**	Unit-I, II, III, IV	
	us Internal Assessment Semester Examination	
Text Books	:	
	rthy D. N. P., Page N. W. and Rodin E. Y., 1990, Mathema blem Solving in Engineering, Physics, Biological and Social	
2. Kap	our J. N., 2008, Mathematical Modelling, New Age Int. Pub	
3. Law	A. M. and Kelton W. D., 1991, Simulation Modeling and Ar	alysis, McGraw-Hill.
4. Mee	erscheart M.M., 2007, Mathematical Modeling, Academic Pr	ess
Referer	ace Books:	
	nytskii V.V., 2005, A Course in Mathematical Modeling, erica	Mathematical Association o

LEV	LEVEL-5 (Electives and self study course)				
S. No.	Course Code	Course Title	Cred it	Remark s	
1	MAT531	Partial Differential Equations	4		
2	MAT532	GAME THEORY	4		
3	MAT533	GRAPH THEORY	4		
4	MAT534	AUTOMATA THEORY AND FORMAL LANGUAGES	4		
5	MAT535	FOUNDATIONS OF SET THEORY	4		
6	MAT536	PROGRAMMING IN C	4		
7	MAT 537	ALGEBRAIC NUMBER THEORY	4		
8	MAT 538	ALGEBRAIC TOPOLOGY	4		
9	MAT 539	AN INTRODUCTION TO FUZZY SET THEORY AND FUZZY LOGIC	4		
10	MAT 540	CELESTIAL MECHANICS	4		
11	MAT 541	COMPUTATIONA L ODE	4		

12	MAT 542	COMPUTATIONA L PDE	4	
13	MAT 543	DIFFERENTIAL GEOMETRY	4	
14	MAT 544	DIFFERENTIAL EQUATIONS & DYNAMICAL SYSTEMS	4	
15	MAT 545	FINANCIAL MATHEMATICS	4	
16	MAT 546	ADVANCED COMPLEX ANALYSIS	4	
17	MAT 547	FUNCTIONS OF SEVERAL REAL VARIABLES	4	
18	MAT 548	LIE ALGEBRAS	4	
19	MAT 549	MODULE THEORY	4	
20	MAT 550	NONLINEAR DYNAMICS & CHAOS	4	
21	MAT 551	FIELDS AND GALOIS THEORY	4	
22	MAT 552	OPERATIONS RESEARCH	4	
23	MAT 553	REPRESENTATIO N THEORY OF FINITE GROUPS	4	
24	MAT 554	SPECIAL FUNCTIONS	4	
25	MAT 555	Mathematics for Machine Learning	4	

<u>Course-Code:</u> MAT531 <u>Course Title: Partial Differential Equations</u>				
Teaching	eaching Scheme Examination Scheme Credits Allotte			
Theory: 3	hours/ week	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3	
Tutorial:	l Hour/Week		Tutorial: 1	
			Total: 4	
Course P	rerequisite: Stude	nts should have knowledge of		
1.	solution methods	of ODE		
2.	differential calcul	us		
Course O	Course Objectives: To teach			
1	theory of partial differential equations and solution methods.			
2	the nature of PDEs like parabolic, elliptic, hyperbolic.			
3	Green's Function method to find the solution of Non-homogeneous PDE			
4	variational formulation of boundary value problems.			
Course O	Course Outcomes: Students will be able to			
1.	solve the PDEs independently			
2	convert partial differential equations to canonical form.			
3	use Green's funct	ion method to solve non-homogeneous PDI	E	
4	apply to Variation	nal formulation of boundary value problems	3	

Val Co Ch andUnit-IIPI Sec Hy andUnit-IIIEig fut sol Val cylUnit-IVGe boUnit-IVGe boCIA*-1Ur baCIA*-1Ur baCIA*-1Ur baCIA*-1Ur baText BoolsSec Sec SecText BoolsSec Sec	ormation of PDEs: First order PDE in two and more independent ariables, Derivation of PDE by elimination method of arbitrary onstants and arbitrary functions. Lagrange's first order linear PDEs, harpit's method for non-linear PDE of first order, Jacobi's method ad Cauchy problem for first order PDEs. DEs of second order with variable coefficients: Classification of second order PDEs, Canonical forms of Parabolic, Elliptic and yperbolic PDEs, Method of separation of variables for Laplace, Heat ad Wave equations. igenvalues and Eigenfunctions of BVP, Orthogonality of Eigen unction, D-Almbert's solutions to wave equations, Fundamental olution of Laplace Equation, Green's function for Laplace Equation, /ave equation, Diffusion Equation, Solution of BVP in spherical and /lindrical coordinates. eneral solution of higher order PDEs,, Variational formulation of bundary value problem. essment: nit -I, II /ritten Exams/ Quizzes /Assignment /Presentations/ Viva-Voce ased on Unit II and III nit-I,II,III,IV	15 Hours 15 Hours
Sec Hy andUnit-IIIEig fun sol Will cylUnit-IVGe boInternalSec boCIA*-1Ur baCIA-IIWill baEoSE**Ur ba*: Continues **: End of SecText Books:	acond order PDEs, Canonical forms of Parabolic, Elliptic and yperbolic PDEs, Method of separation of variables for Laplace, Heat and Wave equations. igenvalues and Eigenfunctions of BVP, Orthogonality of Eigen unction, D-Almbert's solutions to wave equations, Fundamental olution of Laplace Equation, Green's function for Laplace Equation, Vave equation, Diffusion Equation, Solution of BVP in spherical and vlindrical coordinates. eneral solution of higher order PDEs,, Variational formulation of boundary value problem. ressment: nit -I, II Vritten Exams/ Quizzes /Assignment /Presentations/ Viva-Voce ased on Unit II and III	15 Hours
Image: Constraint of the second se	Inction, D-Almbert's solutions to wave equations, Fundamental olution of Laplace Equation, Green's function for Laplace Equation, Vave equation, Diffusion Equation, Solution of BVP in spherical and vlindrical coordinates. eneral solution of higher order PDEs,, Variational formulation of bundary value problem. essment: nit -I, II Vritten Exams/ Quizzes /Assignment /Presentations/ Viva-Voce ased on Unit II and III	
Internal Asse CIA*-1 Ur CIA-II Wr ba EoSE** Ur *: Continuus **: End of Se Text Books	essment: nit -I, II //ritten Exams/ Quizzes /Assignment /Presentations/ Viva-Voce ased on Unit II and III	15 Hours
CIA*-1 Ur CIA-II Wi bai EoSE** Ur *: Continuus *: End of Se Text Books:	nit -I, II /ritten Exams/ Quizzes /Assignment /Presentations/ Viva-Voce ased on Unit II and III	
CIA-II Window Wi	Vritten Exams/ Quizzes /Assignment /Presentations/ Viva-Voce ased on Unit II and III	
EoSE** Ur *: Continuus **: End of Se Text Books:	ased on Unit II and III	
*: Continuous **: End of Se Text Books:	nit-I,II,III,IV	
**: End of Se Text Books:		
	s Internal Assessment emester Examination	·
1. Rao S. K, A		
	Introduction to Partial Differential Equations, Phi Learning.	
2. Sneddon I.	N., Elements of Partial Differential Equations, Dover Publications.	
3. Birkhoff G	G., Rota G. C., Ordinary Differential Equations, Wiley.	
Reference Bo	ooks:	
1. Amar	ranath T., An Elementary Course in Partial Differential Equations, N	Varosa Publication.
E-resources:		

1. <u>ht</u>	tps://archive.nptel.ac.in/courses/111/105/111105093	

<u>Course-Code: MAT532</u> <u>Course Title: Game Theory</u>				
Teaching Sch	Teaching Scheme Examination Scheme Credits Allotted			
Theory: 3 hou	urs/ week	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3	
Tutorial: 1 Ho	our/Week		Tutorial: 1	
			Total: 4	
Course Prero	equisite: Studer	nts should have		
1.	knowledge of linear programming and simplex methods.			
Course Objective:				
1.	To provide a rigorous treatment of solution concepts for games with perfect and imperfect information including Nash and subgame perfect Nash equilibria.			
2.	To cover topics such as auction, VNM utility function, bargaining game, etc.			
3.	To provide detailed knowledge about cooperative games.			
4.	To teach about games with imperfect information.			
Course Outcomes: Students will be able to				

1.	model competitive real world phenomena using concepts from game theory and identify optimal strategy and equilibrium solutions for such models.			
2.	learn the two person zero-sum game and its equilibrium solution.			
3.	discuss dynamic games and cooperative games.			
4.	work on strategic and dynamic games with imperfect info	rmation.		
Course Cont	ent:			
Unit-I	A General Introduction to Game Theory-its Origin, Representation of Games, Type of Game, Games with Perfect Information-Strategic Form Game, Solution Concept- Pure and Mixed Strategies, Dominance and Best Response, Pareto Optimality, Maxmin and Minmax Strategies,	15 Hours		
Unit-II	Pure and Mixed Strategies Nash Equilibrium, Existence of a Nash Equilibrium, Two-person Zero-Sum Games- its Solution, Market Equilibrium and Pricing: Cournot and Bertrand Game, Auctions.	15 Hours		
Unit-III	Decision Making and Utility Theory, Von Neumann and Morgenstern Utility Function, Theory of Risk Aversion, Equilibrium Theory. Dynamic Games of Perfect Information-Extensive Form Game, Subgame Perfect Nash Equilibrium, Backward Induction, Stackelberg Model of Duopoly. Coalition Games, Core and Shapley Value, Bargaining Game, Illustrations.	15 Hours		
Unit-IV	Strategic Games with Imperfect Information -Bayesian Games, Cournot's Duopoly with Imperfect Information. Dynamic Games with Imperfect Information. Finitely and Infinitely Repeated Games, The Folk Theorem, Illustrations.	15 Hours		

CIA*-1	Unit -I	
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit II and III	
EoSE**	Unit-I,II,III,IV	
	bus Internal Assessment Semester Examination	
1. Ost 2. Ost 3. Fuc 4. Vo	borne M.J., 2003, <i>An Introduction in Game Theory</i> , Oxford Dorne M. J. and Rubinstein A., 1994, <i>A Course in Game The</i> denberg D. and Tirole J., 1991, <i>Game Theory</i> , MIT Press. n Neumann J. and Morgenstern O., 1944, <i>Theory of Ga</i> w York: John Wiley and Sons.	eory, MIT Press.

1. Watson J., 2013, *Strategy: An Introduction to Game Theory (3rd Ed.)*, W.W. Norton & Company, London.

E-resources:

1. https://archive.nptel.ac.in/courses/110/104/110104063/

<u>Course-Code:</u> MAT533 <u>Course Title:</u> Graph Theory				
Teaching Scheme	Examination Scheme	Credits Allotted		
Theory: 3 hours/ week	EoSE: 60 Marks	Theory: 3		

		Internal Assessment: 40 Marks	
Tutorial: 1	Hour/Week		Tutorial: 1
			Total: 4
Course P	rerequisite: Studer	nts should have knowledge of	
1.	basic concepts of	sets	
Course O	bjectives:		
1	To teach the stude	ents basics of graphs	
2	To teach the students the connectivity		
3	To teach the students the planar graph		
4	To teach the stude	ents incidence matrix	
Course O	utcomes: Students	will be able to learn	
1.	the concepts of o	peration on graphs	
2	the Eulerian graphs		
3	the Kuratowski's theorem		
4	the automorphism of graphs		
Course C	ontent:		
Unit-I	Graphs, Isomorp	shism of graphs, subgraph, walk, connectedness,	15 Hours

	degree, bipartite graph, Intersection graph, Operations on graphs, graph products, cut point, bridges, blocks		
Unit-II	Tree, Center, Centroid, Connectivity, Line connectivity, Partition, Graphical partition, Eulerian graphs, Hamiltonian graphs, Line graph, Characterization of line graph	15 Hours	
Unit-III	Covering, Independence, Planar graphs, Kuratowski's theorem, Chromatic Number, Chromatic polynomial	15 Hours	
Unit-IV	Adjacency matrix, Incidence matrix, automorphism groups of graphs, group of composite graph	15 Hours	
Internal A	Assessment:		
CIA*-1	Unit -I, II		
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit III		
EoSE**	Unit-I,II,III,IV		
	uous Internal Assessment f Semester Examination		
Text Boo	ks:		
	1. Harary F., 1969, <i>Graph Theory</i> , Narosa Publication House, New I	Delhi	
	2. Balakrishnan R., Ranganathan K., 2012, A Textbook of Graph The York	eory, Springer, New	
	 Deo N., 1974, Graph Theory with Applications to Engineering an Prentice-Hall of India, New Delhi 	d Computer Science,	

Reference Books:		
1. Diestel R., 2000, Graph Theory, Springer, New York		
E-resources:		
https://archive.nptel.ac.in/courses/		

	Course Code: MAT534			
	Course Title:	AUTOMATA THEORY AND FORMAL LA	ANGUAGES	
Teaching	Scheme	Examination Scheme	Credits Allotted	
Theory: 3	hours/ week	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3	
Tutorial: 1	Hour/Week		Tutorial: 1	
			Total: 4	
Course Pr	rerequisite: Stude	nts should have knowledge of		
1.	basic concepts of sets, relations, functions			
2.	basic concepts of propositional logics			
Course O	Course Objectives:			
1	To explain why the study of automata is an important part of the core of computer science.			
2	To explain how finite automata are useful models in science and technology.			

3	To develop understanding of the concepts of automata theory and form	al languages.	
Course O	Dutcomes: The students will be able to learn		
1.	how automata and formal languages impact our life.		
2	the concepts and topics in hand without haste;		
3	the significance of the concepts defined and the theorems proved here;		
4	the concepts in more generalized form to capture uncertainty and vagueness of complex systems.		
Course C	ontent:		
Unit-I	Theory of Computation: Finite automata, Deterministic and non- deterministic finite automata, equivalence of deterministic and non- deterministic automata, Moore and Mealy machines, Minimization of Automata, Regular expressions.	15 Hours	
Unit-II	Conversion of finite automata to Regular expression. Grammars and Languages, Derivations, Language generated by a grammar, Regular language and regular grammar, Context free grammar and context-free language.	15 Hours	
Unit-III	Context sensitive grammars and Languages. Context-free grammar in Chomsky normal form, Regular expressions, Formal definition of regular expression, Equivalence of regular expression and finite automata, Kleene's theorem.	15 Hours	
Unit-IV	Formal definition of a Turing Machine, Representation of a Turing Machine , Turing machines as language acceptors, Universal Turing machines, decidability, undecidability, Turing Machine halting problem, Rice Theorem.15 Hours		
Internal A	Assessment:		
CIA*-1	Unit -I		

CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit II and III	
EoSE**	Unit-I,II,III,IV	
	uous Internal Assessment f Semester Examination	
Text Boo	ks:	
1. H	Celly D., 1995, Automata and Formal Languages: An Introduction, Prentic	e-Hall.
	Iopcroft J. E., Motwani R. and Ullman J. D., 2001, <i>Introduction to Auton Computation (2nd Ed.)</i> , Pearson Edition.	nata, Languages, and
3. I	inz P., 2010, An Introduction to Formal Languages and Automata, Narosa	l.
Reference	e Books:	
4. 5	ipser M., 2012, Introduction to the Theory of Computation (3 rd Ed.), Ceng	age Learning.

- 1. https://archive.nptel.ac.in/courses/111/103/111103016/
- 2. <u>https://nptel.ac.in/courses/106105196</u>

<u>Course-Code:</u> MAT535 <u>Course Title:</u> FOUNDATIONS OF SET THEORY			
Teaching Scheme	Examination Scheme	Credits Allotted	

Theory: 3 hours/ week		EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3
Tutorial: 1 Hour/Week			Tutorial: 1
			Total: 4
Course Pi	erequisite: Stude	nts should have knowledge of	
1.	basic concepts of	sets	
Course O	bjectives:		
1	To teach the stud	ents the mathematical statements	
2	To teach the stud	ents the relation and map	
3	To teach the stud	ents the construction of number systems	
4	To teach the students ordinal numbers		
Course O	utcomes: Students	s will be able to learn	
1.	the Zermelo-Frae	enkel axioms of set theory	
2	the Peano's axion	ns	
3	the dedekind cut approach		
4	the cardinal arithmetic		
Course Co	ontent:		
Unit-I	Mathematical sta	tements, connectives, simple sentence and compound	15 Hours

1 CAT D00	1. Levy A., 1979, <i>Basic Set Theory</i> , Springer-Verlag, New York.	
	tious Internal Assessment f Semester Examination	
EoSE**	Unit-I,II,III,IV	
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit III	
CIA*-1	Unit -I, II	
Internal A	Assessment:	
Unit-IV	∈-transitive sets, Ordinals, class of ordinals, Trichotomy law between ordinals, characterization of an ordinal in terms of ∈- transitive sets, successor and limit ordinals, Principle of Transfinite Induction, Ordinal Arithmetic, Ordinals and well ordered set, Axiom of Choice and its equivalence, The Banach- Tarski Paradox, Cardinals and its arithmetic, ordering of cardinals, countable and uncountable sets, continuum hypothesis	15 Hours
Unit-III	Construction of other number systems, Integers and Rational Numbers, Their arithmetic and ordering, Dedekind cut, Real number system as complete ordered field	15 Hours
Unit-II	Successor set and natural numbers, Ordered pair, Cartesian product, Relations and Maps on sets, Indexing set, Arbitrary intersection and union, Extension of Maps, Fundamental Theorem of Maps, Number Systems, Natural Numbers, Peano's Axioms, Pigeonhole Principle,	15 Hours
	sentence, universal quantifiers, Functional Rule and Truth Table, Conjunction, Disjunction, Implication, Tautology and Contradiction, Rules of Inference and Replacement, method of contradiction, Zermelo-Fraenkel axioms of set theory, Class of sets, Russel's Paradox	

- 2. Copi M., 1979, Symbolic Logic, Macmillan Publishing Co. Inc., New York.
- 3. Kakkar V., 2016, Set Theory: Read it, Absorb it and Forget it, Narosa Publication House, New Delhi.
- 4. Enderton H. B., 1977, *Elements of Set Theory*, Academic Press Inc., New York.

Reference Books:

1. Halmos P. R., 1960, *Naive Set Theory*, Von Nostrand Reinhold Company, New York.

E-resources:

https://archive.nptel.ac.in/courses/

<u>Course-Code: MAT-536</u> <u>Course Title: PROGRAMMING IN C</u>		
Teaching Scheme	Examination Scheme	Credits Allotted
Theory: 3 Hours/week	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3
Lab: 2 Hour/week		Lab: 1

	Т	otal: 4		
Course Pres	Course Prerequisite: Students should have knowledge of			
1.	basics of set and functions			
Course Obj	ectives: This course aims to learn			
1.	To introduce the basic concepts of computer programming languages			
2.	To develop the logics for create programs.			
3.	To introduce basic programming constructs			
Course Out	comes: The students will be able to learn			
1.	the concepts of computer programming languages			
2.	the codes the programmes in C language			
3.	the developing of the applications			
Course Con	ntent:			
Unit-I	Basic concepts of programming languages: Programming dom language evaluation criterion and language categories, Descri Syntax and Semantics, formal methods of describing syntax, recur descent parsing, Dynamic semantics (operational semar denotational semantics, axiomatic semantics).	bing Theor rsive y and		
Unit-II	Unit-IINames, Variables, Binding, Type checking, Scope and lifetime data types, array types, record types, union types, set types and pointer types, arithmetic expressions, type conversions, relational and Boolean expressions, assignment statements, mixed mode assignment.1 H H H L			
Unit-III	Statement level control structures, compound statements, select statements, iterative statements, unconditional branching, Character variables and constants, keywords, Instructions, assignment statem arithmetic expression, comment statements, simple input and output	r set, y and ents, 7		

Unit-IV	Relational operators, logical operators, control structures, decision control structure, loop control structure, case control structure, functions, subroutines, scope and lifetime of identifiers, parameter passing mechanism, arrays and strings.	12 Hours Theor y and 8 Hours Lab	
Internal As	sessment:		
CIA-I*	Unit-I		
CIA-II	Written Exams/ Quizzes/ Assignment/ Presentations/ Viva-Voce/ based on Unit II and III		
EoSE**	Unit-I, II, III, IV		
	us Internal Assessment Semester Examination		
Text Books	:		
1. Sebesta R. W., 1999, Concepts of Programming Language, Addison Wesley, Pearson Education Asia.			
2. Deitel P., Deitel H., 2010, How to Program C (6th Ed.), Addison Wesley, Pearson Education Asia.			
3. Toledo R. International I	A. M. and Cushman P. K., 2003, Introduction to Computer Science, Mc Edition.	Graw Hill	
4. Appleby D.	, Kopple J. J V., 1997, Programming Languages (2nd Ed.), Tata McGraw Hill	l, India.	
5. King K. N.,	2008, C Programming a Modern Approach (2nd Ed.), W. W. Norton & Comp	pany.	
Reference B	Books:		
1. Kanet	kar Y., 2018, Let Us C (16th Ed.), B.P.B Publications.		
E-resources	:		
20to,Aftern	necourses.nptel.ac.in/noc22_cs40/preview#:~:text=The%20course%20is% oon%20Session%202pm%20to%205pm.&text=This%20course%20will% ion%20for%20date%20and%20time		

<u>Course-Code:</u> MAT537 <u>Course Title:</u> ALGEBRAIC NUMBER THEORY			
Teaching	Scheme	Examination Scheme	Credits Allotted
Theory: 3	hours/ week	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3
Tutorial: 1	Hour/Week		Tutorial: 1
			Total: 4
Course Pi	rerequisite: Studer	ts should have knowledge of	
1.	basic concepts of	ring and elementary number theory	
Course O	hiective•		
Course O			
1	To teach the stude	ents properties of number fields	
2	To teach the students the quadratic fields		
3	To teach the stude	ents the class group	
Course O	Course Outcomes: Students will be able to learn		
1.	the arithmetic of algebraic number fields		
2	Minkowski's the	eorem	
3	Dirichlet unit the	orem	

4	the diophantine equation		
Course Co	ontent:		
Unit-I	Number fields, the ring of algebraic integers, calculation for quadratic, cubic and cyclotomic cases, norms and traces, integral bases and discriminants,	15 Hours	
Unit-II	Dedekind domains, unique factorization of ideals, norm of ideals, factorization of prime ideals in extensions, The ideal class group, lattices in Rn, Minkowski's theorem,	15 Hours	
Unit-III	Finiteness of the class number and its consequences, some class number computations, Dirichlet unit theorem, units in real quadratic fields	15 Hours	
Unit-IV	Some Diophantine equations, Cubic residue symbol, Jacobi sums, Cubic reciprocity law, biquadratic reciprocity law and Eisenstein reciprocity law	15 Hours	
Internal A	Assessment:		
CIA*-1	Unit -I, II		
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit III		
EoSE**	Unit-I,II,III,IV		
*: Continuous Internal Assessment **: End of Semester Examination			
Text Books:			
1. Esmonde J., Murty M. R., 1999, <i>Problems in Algebraic Number Theory</i> , GTM, Springer-Verlag.			
2. Mollin R.A., 2001, <i>Algebraic Number Theory</i> , CRC Press.			

- 3. Alaca S., Williams K. S., 2004, *Introductory Algebraic Number theory*, Cambridge University Press.
- 4. Zuckerman N.S.H., Montgomery L.H., 1991, An Introduction to the Theory of Numbers, John Wiley.

Reference Books:

1. Marcus D. A., 1977, Number Fields, Springer-Verlag.

E-resources:

https://archive.nptel.ac.in/courses/

<u>Course-Code:</u> MAT538 <u>Course Title:</u> ALGEBRAIC TOPOLOGY			
Teaching Scheme	Examination Scheme	Credits Allotted	
Theory: 3 hours/ week	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3	
Tutorial: 1 Hour/Week		Tutorial: 1	
		Total: 4	

Course Prerequisite: Students should have knowledge of			
1.	concepts of general topology		
Course O	bjectives:		
1	To teach the students one point compactification		
2	To teach the students the fundamental groups		
3	To teach the students the lifting problems and its uniqueness		
4	To teach the students Van Kampen Theorem		
Course O	utcomes: The students will be able to learn		
1.	the concepts of pushout and adjunct spaces		
2	The calculation of some fundamental groups		
3	The Deck transformation		
4	The homology groups		
Course Content:			
Unit-I	Review of General Topology, Continuous maps, compactness, one point compactification, Locally compact spaces, Proper maps, Quotient space, Real Projective space, Mobius band, Klein's bottle, torus, Wedge product, Co-product of groups, pushout, adjunct spaces, Cone	15 Hours	
Unit-II	Path, Homotopy, Reparametrization, First fundamental groups,	15 Hours	

	Simply connected spaces, Category and functors between categories, Category of pointed topological space, Functorial property of fundamental group, Retraction map, Brower's fixed point theorem, fundamental group of product spaces,		
Unit-III	Deformation Retract, Covering projections, the lifting problems and its uniqueness, lifting of path and homotopy, Action of fundamental groups on fibers, regular covering, Deck transformation, group of Deck transformations, its action on fibres	15 Hours	
Unit-IV	Van Kampen Theorem, fundamental group of some adjunct spaces, n- simplex, face maps, chain, boundary operator, Chain complexes, homology groups, Convex sets and barycentric coordinates, Homotopy invariance of homology, Mayer Vitory sequence and its applications, Maps on sphere and degree	15 Hours	
Internal	Assessment:		
CIA*-1	Unit -I, II		
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit III		
EoSE**	Unit-I,II,III,IV		
	Lous Internal Assessment f Semester Examination		
Text Boo	ks:		
	1. Munkres J. R., 2000, <i>Topology</i> , Prentice-Hall of India.		
	 Greenberg M. J. and Harper J. R., 1997, <i>Algebraic Topology</i>: A First Course, Addison-Wesley Publishing company. 		
	3. Deo S., 2006, <i>Algebraic Topology: A Primer</i> , Hindustan Book Agency.		
	 Vick J. W., 1994, Homology Theory, An Introduction to Algebraic Verlag. 	c Topology, Springer	

Reference	Boo	ks:	
	1.	Hatcher A., 2002, Algebraic Topology, Cambridge University Press	s.
E-resourc	es:		
https://a	rchiv	ve.nptel.ac.in/courses/	

<u>Course-Code: MAT539</u> <u>Course Title: An Introduction to Fuzzy Set Theory and Fuzzy Logic</u>			
Teaching Scheme		Examination Scheme	Credits Allotted
Theory: 3 hours/ week		EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3
Tutorial: 1 Hour/Week			Tutorial: 1
			Total: 4
Course Prerequisite: Students should have the knowledge of			
1.	classical set theory, and two-valued logic.		
Course Objective:			
1.	To provide the basic knowledge of the fuzzy sets, operations and their properties.		
2.	To teach them the fundamental concepts of fuzzy functions and fuzzy relational calculus.		

	-			
3.	To teach them fuzzy logic in detail.			
4.	To teach them fuzzy numbers and evidence theory.			
Course Out	comes: Students should be able to learn			
1.	the significance, need and applications of concepts of fuzziness.			
2.	the fundamental concepts of Fuzzy functions and Fuzzy logic			
3.	the fuzzy numbers and its types.			
4.	how to apply evidence theory.			
Course Con	Course Content:			
Unit-I	Crisp sets vs fuzzy sets: Membership function types and properties, Chance versus fuzziness, Level sets, Cardinality and fuzzy cardinality, Set theoretic operations on fuzzy sets, Inclusion and Difference, Fuzzy compliments, Fuzzy intersections: t-Norms, Fuzzy unions: t-Conorms, Algebraic operations, Averaging operators. Alpha-cut decomposition principle,	15 Hours		
Unit-II	Extension principle. Crisp versus fuzzy relations, Projections, Composition of fuzzy relations, Fuzzy binary relations, Fuzzy n-ary relation, transitive closure, Fuzzy equivalence relations. Classical logic an overview, : Introduction to propositional Logic, Boolean Algebra, Multi valued logic,	15 Hours		
Unit-III	Fuzzy logic, Linguistic hedges, Fuzzy propositions (conditional and unconditional), Approximate reasoning, Implication operations, Natural language, Fuzzy qualifiers, Inference from conditional and qualified fuzzy propositions, Fuzzy Quantifiers, Inference from quantified fuzzy propositions.	15 Hours		
Unit-IV	Fuzzy numbers, Types of fuzzy numbers, Linguistic variables, Fuzzy arithmetic: Extension principle and Interval arithmetic, Fuzzification, Defuzzification, Methods of Defuzzification. Fuzzy measures, Evidence	15 Hours		

	theory, Necessity and belief measures, Probability measures vs possibility measures.	
Internal As	ssessment:	
CIA*-1	Unit -I	
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit II and III	
EoSE**	Unit-I,II,III,IV	
	us Internal Assessment Semester Examination	
Text Books	:	
Hal 2. Ros	r, G. J., Yuan B., 1997, Fuzzy Sets and Fuzzy Logic: The 1. as T. J., 1995, Fuzzy Logic with Engineering Applications, Me Imermann H. J. 1990, Fuzzy Set Theory and Its Application (cGraw Hill.

- Zimmermann H. J., 1990, *Fuzzy Set Theory and Its Application (2nd Ed.)*, Kluwer, Boston.
 Lee. K. H., 2005, *First Course on Fuzzy Theory and Applications*, Springer-Verlag.

E-resources:

1. https://archive.nptel.ac.in/courses/108/104/108104157/

<u>Course-Code: MAT540</u> <u>Course Title: Celestial Mechanics</u>			
Teaching Scheme	Examination Scheme	Credits Allotted	

Theory: 3 hou	rs/ week	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3		
Tutorial: 1 Hour/Week			Tutorial: 1		
			Total: 4		
Course Prere	Course Prerequisite:				
	Basics of line calculus.	ear algebra, analytical geometry, differential	equations, and vector		
Course Obje	ctive: To develo	op the concept of			
1.	-	ace objects via Kepler's laws of planetary sualization of different paths/orbits of movin			
2.	moving frame of reference and its relation to fixed frame along with formulation and special solutions and applications of three body problems.				
3.	stable/unstable equilibrium points and their applications along with formulation and applications of different kinds of restricted three body problems.		-		
4.	different kinds of perturbations in space and their impacts on small space objects (e.g. asteroid, satellite, space craft etc.) along with normal form and its application.				
Course Outco	omes: Students	will be able to			
1.	learn about planetary motion of space objects and visualize their orbits/paths.				
2.	know the need of different kinds of frames of reference and understand the formulation and importance of special solutions of three body problems.				
3.	-	ble/unstable equilibrium points and unders in addition with applications of different			

	problems.				
4.	understand about the different kinds of perturbations in space and their impacts on small space objects (e.g. asteroid, satellite, space craft etc.) along with application of normal form for stable motion.				
Course Cont	ent:				
Unit-I	Introduction, Kepler's Laws of Planetary Motion, Central force motion, Differential equation of orbit, Inverse square force and Geometry of orbits, Relative motion in two body problem, Earthbound satellite circular orbit, Classical orbital elements, Kepler's equation and its applications.	15 Hours			
Unit-II	Moving frame of reference, Derivative of a vector in a rotating frame, motion of a mass relative to rotating frame, Uniform rotating frame, General three body problem, Integrals of motion, Lagrange's special solutions.	15 Hours			
Unit-III	Circular RTBP, Lagrangian points and their stability, Zero velocity curves, Elliptic RTBP, Equilibrium points, Existence of ZVC, Introduction of Robe's RTBP, Hill's problem, Sitnikov problem and their applications.	15 Hours			
Unit-IV	Introduction of perturbations factors, potential of oblate body, effective force of radiating body, potential due to disc or belt like structure. Introduction of normal form, Hamiltonian function, Normalization of Hamiltonian function of Circular RTBP and its applications.	15 Hours			
Internal Asso	Internal Assessment:				
CIA*-1	Unit I				
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit II and III				
EoSE**	Written Exam. for Unit-I, II, III, & IV				

*: Continuous Internal Assessment

**: End of Semester Examination

Text Books:

- 1. McCuskey S. W., 1963, *Introduction to Celestial Mechanics*, Addison-Wesley Publishing Company.
- 2. Murray C. D. and Dermott S.F., 2000, Solar System Dynamics, Cambridge University Press.
- 3. Strogatz S.H., 1994, *Nonlinear Dynamics and Chaos*: With Applications to Physics, Biology, Chemistry and Engineering, Addison-Wesley.
- 4. Rao K.S., 2009, Classical Mechanics, PHI Learning, Pvt. Ltd.

Reference Books:

- 1. Moulton F.R., 1914, An Introduction to Celestial Mechanics, the MacMillan Company.
- 2. Szebehely V., 1967, *Theory of orbits. The restricted problem of three bodies*, New York Acad. Press.

E-resources:

https://mitpress.mit.edu/9780262080484/celestial-mechanics/

Cour	<u>Course-Code: MAT-541</u> <u>se Title:</u> COMPUTATIONAL ODE	
Teaching Scheme	Examination Scheme	Credits Allotted

Theory: 3 Hours/week		EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3	
Tutorial: 1	Hour/week		Tutorial:	1
			Total: 4	
Course Pre	requisite: Students s	hould have knowledge of		
1.	basics of Linear A	lgebra		
2.	basics of Different	ial Equations		
3.	basics of Numeric	al Methods		
Course Obj	ective: This course ai	ms to learn		
1.	the numerical tech	niques for IVP and BVP		
2.	the convergence as	nd stability of finite difference schemes		
3.	the finite difference	e method for differential equations.		
4.	the finite element methods for differential equations.			
5.	the application of numerical techniques in real life problems.			
Course Out	comes: The students	will be able to		
1.	obtain numerical solutions and the concepts of consistency, stability, convergence and error analysis.		rgence	
2.	check the stability and convergence of numerical methods.			
3.	solve numerically linear and nonlinear ordinary differential equations.			
4.	find the numerical solution to ODEs by using a computer program.			
5.	apply various num	erical methods in real life problems.		
Course Con	itent:			
Unit-I	Numerical solutions of systems of simultaneous first order differential equations and second order initial value problems (IVP) by Euler and Runge-Kutta explicit methods, numerical solutions of second order boundary value problems (BVP) of first, second and third types by shooting method.		-	
Unit-II	difference operate solutions of such	ifference schemes of second order BVP ors (solutions of tridiagonal system of ec BVP by Newton-Cotes and Gaussian in e and stability of finite difference schemes.	quations),	15 Hours

Unit-III	Variational principle, approximate solutions of second order BVP of first kind by Rayleigh-Ritz, Galerkin, collocation and finite difference methods,	15 Hours
Unit-IV	Finite Element methods for BVP-line segment, triangular and rectangular elements, Ritz and Galerkin approximation over an element, assembly of element equations and imposition of boundary conditions.	15 Hours
Internal As	sessment:	
CIA-I*	Unit-I	
CIA-II	Written Exams/ Quizzes/ Assignment/ Presentations/ Viva-Voce based on Unit II and III	
EoSE**	Unit-I, II, III, IV	
	us Internal Assessment Semester Examination	
	Semester Examination	
**: End of S Text Books 1. Jain M. K	Semester Examination	ntific and
**: End of S Text Books 1. Jain M. K Engineering (Semester Examination : K., Iyengar S. R. K. and Jain R. K., 2003, <i>Numerical Methods for Scien</i>	ntific and
**: End of S Text Books 1. Jain M. K Engineering (2. Jain M. K.,	Semester Examination : C., Iyengar S. R. K. and Jain R. K., 2003, <i>Numerical Methods for Scien</i> <i>Computations</i> , New Age Publications.	ntific and
 **: End of S Text Books 1. Jain M. K Engineering O 2. Jain M. K., 3. Sastry S. S. 	 Semester Examination : <li:< li=""> : : :<td></td></li:<>	
 **: End of S Text Books 1. Jain M. K Engineering C 2. Jain M. K., 3. Sastry S. S. 4. Griffiths D. 	 Semester Examination : X., Iyengar S. R. K. and Jain R. K., 2003, Numerical Methods for Scient Computations, New Age Publications. 1984, Numerical Solution of Differential Equations (2nd Ed.), Wiley-Eastern. , 2002, Introductory Methods of Numerical Analysis, Prentice-Hall of India. 	
 **: End of S Text Books 1. Jain M. K Engineering C 2. Jain M. K., 3. Sastry S. S. 4. Griffiths D. 5. Gerald C. F 	 Semester Examination : :<td></td>	
 **: End of S Text Books 1. Jain M. K Engineering C 2. Jain M. K., 3. Sastry S. S. 4. Griffiths D. 5. Gerald C. F Reference I 2. Singh 	 Semester Examination : :<td>ty Press.</td>	ty Press.
 **: End of S Text Books 1. Jain M. K Engineering C 2. Jain M. K., 3. Sastry S. S. 4. Griffiths D. 5. Gerald C. F Reference I 2. Singh 	 Semester Examination : X., Iyengar S. R. K. and Jain R. K., 2003, Numerical Methods for Scien Computations, New Age Publications. 1984, Numerical Solution of Differential Equations (2nd Ed.), Wiley-Eastern. , 2002, Introductory Methods of Numerical Analysis, Prentice-Hall of India. V. and Smith I. M., 1993, Numerical Methods for Engineers, Oxford University F. and Wheatley P. O., 1998, Applied Numerical Analysis, Addison- Wesley. Books: A. K. and Singh, A. K., 2018, Numerical Methods for Differential Equations cams, Narosa Publications. 	ty Press.

<u>Course-Code: MAT-542</u> <u>Course Title:</u> <u>COMPUTATIONAL PDE</u>					
Teachin	Teaching Scheme Examination Scheme Credits Allotted				
Theory:	EoSE: 60 Marks Theory: 3 Hours/week EoSE: 60 Marks Theory: 3		Theory: 3		
Tutorial	: 1 H	our/week		Tutorial: 1	
				Total: 4	
Course	e Pre	requisite: The stu	dent should have knowledge of		
1.		basic of Linear	Algebra		
2.		basic of Differe	ential Equations		
3.		basic of Numer	ical Methods		
Course	e Obj	ective: This cours	e aims to learn		
1.	the numerical techniques for partial differential equations				
2.	the convergence, truncation errors and stability of finite difference schemes				
3.	the	e explicit methods	for partial differential equations.		
4.	the implicit methods for partial differential equations				
5.	the finite element methods for partial differential equations.				
6.	the	e application of nu	merical techniques in real life problems.		
Course	e Out	comes: The stude	ents will be able to		
1.	obtain numerical solutions and the concepts of truncation errors, stability, convergence.				
2.	check the stability and convergence of numerical methods.				
3.	solve numerically parabolic, elliptic and hyperbolic equations.				
4.	find the numerical solution to PDEs by using a computer program.				
5.	apply various numerical methods in real life problems.				
Course	e Con	itent:			

Unit-I	Numerical solutions of parabolic equations of second order in one space variable with constant coefficients:- two and three levels explicit and implicit difference schemes, truncation errors and stability, Difference schemes for diffusion convection equation,			
Unit-II	Numerical solution of parabolic equations of second order in two space variables with constant coefficients-improved explicit schemes, implicit methods, alternating direction implicit (ADI) methods.15 Hours			
Unit-III	Numerical solution of hyperbolic equations of second order in one and two space variables with constant and variable coefficients-explicit and implicit methods, alternating direction implicit (ADI) methods.15 Hours			
Unit-IV	Numerical solutions of elliptic equations, Solutions of Dirichlet, Neumann and mixed type problems with Laplace and Poisson equations in rectangular, circular and triangular regions, Finite element methods for Laplace, Poisson, heat flow and wave equations15 Hours			
Internal As	ssessment:			
CIA-I*	Unit-I			
CIA-II	Written Exams/ Quizzes/ Assignment/ Presentations/ Viva-Voce based on U and III	Jnit II		
EoSE**	Unit-I, II, III, IV			
	us Internal Assessment Semester Examination			
Text Books	:			
1. Jain M. K Equations, W	K., Iyengar S. R. K., Jain R. K., 1994, Computational Methods for Partial 'iley Eastern.	Differenti	al	
2. Jain M. K.	, 1984, Numerical Solution of Differential Equations (2 nd Ed.), Wiley Eastern.			
3. Sastry S. S	., 2002, Introductory Methods of Numerical Analysis, Prentice-Hall of India.			
4. Griffiths D	v. V., Smith I. M., 1993, Numerical Methods of Engineers, Oxford University F	Press.		
5. General C.	F., Wheatley P. O., 1998, Applied Numerical Analysis, Addison-Wesley.			
6. Bathe K. J.	, Wilson E. L., 1987, Numerical Methods in Finite Element Analysis, Prentice	-Hall.		
Reference	Books:			
	umder, S., 2016, Numerical Methods for Partial Differential Equations: Finite Finite Volume Methods, Academic Press.	Difference	2	
 Sewell, G., 2015, <i>THe Numerical Solution of Ordinary and Partial Differential Equations</i>, 3rd Ed., World Scientific Publications. 				
E-resource	s:			
https://ocw spring-200	.mit.edu/courses/18-336-numerical-methods-for-partial-differential-equat 9/	ions-		

<u>Course Code: MAT543</u> Course Title: DIFFERENTIAL GEOMETRY					
Teaching Sch	Teaching Scheme Examination Scheme Credits Allotted				
Theory: 3 hours/ week		EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3		
Tutorial: 1 Ho	our/Week		Tutorial: 1		
			Total: 4		
Course Prere	equisite: Studer	Its should have knowledge of calculus	I		
Course Obje	ctive:				
1.	To introduce the basic concept of smooth manifolds with a variety of examples				
2.	To elaborate the basic notions of smooth maps between manifolds and tangent spaces.				
3. To convey applications of manifolds					
Course Outcomes: On completion of course, students will be able to learn					
1.	the concepts of smooth manifold, smooth map, and tangent space.				
2.	the inverse submersions;	function theorem to describe the loc	al structure of immersions and		

3.	the applications and significances of topic in hands.		
Course Co	ntent:		
Unit-I	Smooth manifold, chart and atlas, Compatible charts, Smooth maps between manifolds, Diffeomorphisms, Partial derivatives on manifolds, the inverse function theorems, Quotient manifolds	15 Hours	
Unit-II	Real projective spaces, Standard smooth atlas for real projective space, Tangent spaces, Differential of a map, local expressions for differentials, Immersions and submersions, Rank, critical and regular points,	15 Hours	
Unit-III	Submanifolds and level sets, the rank of a smooth maps, Whitney's embedding theorem; Tangent bundle, Smooth sections and smooth frames, Vector fields and local flows.	15 Hours	
Unit-IV	Differential 1-Forms, Cotangent bundle, Characterization of smooth 1-Forms, Pullback of 1- forms, Differential k-Forms, local expression for k- Form, Pullback of k-Forms, the Wedge Product, Differential forms on a circle.	15 Hours	
Internal As	sessment:	I	
CIA*-1	Unit -I		
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit II and III		
EoSE**	Unit-I,II,III,IV		
	us Internal Assessment Semester Examination	1	
Text Books	:		

- 2. O'Neill B., 1966, *Elementary Differential Geometry*, Academic Press, New York.
- 3. Thorpe J. A., 1979, Elementary Topics in Differential Geometry, Springer Verlag.

4. Somasundaram D., 2010, Differential Geometry: A First Course, Narosa Pub. House.

Reference Book

Willmore T. J., 1965, An Introduction to Differential Geometry, Oxford University Press.

E-resources:

1. https://ocw.mit.edu/courses/18-950-differential-geometry-fall-2008/

<u>Course-Code: MAT 544</u> <u>Course Title: Differential Equations & Dynamical Systems</u>				
Teaching Scheme		Examination Scheme	Credits Allotted	
Theory: 3 hou	urs/ week	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3	
Tutorial: 1 Ho	our/Week		Tutorial: 1	
			Total: 4	
Course Prere	equisite: The st	udent should have knowledge of		
1.	differential Ec	quations, calculus and linear algebra		
Course Obje	ctive:			
1.	To introduce the theory, properties and applications of various dynamical systems			
2.	To make the students familiar with stable and unstable subspaces and manifolds		ble subspaces and manifolds	
3.	To teach an important theorems: Hartman-Grobman, stable manifold			
4.	To introduce center manifold theory and normal form theory			
5.	To discuss global existence theorem and Poincare-Bendixon theory			
Course Outcomes: The students will be able				
1.	to analyze and solve system of linear differential equations			
2.	learn theory of nonlinear system: existence, maximal interval of existence and linearization			
3.	to apply different important theorem and theories e.g., Hartman-Grobman, stable			

	manifold theorems, centre and normal form theory			
4.	to learn global existence theorem			
5.	to discuss about limit sets, limit cycles and periodic orbits	to discuss about limit sets, limit cycles and periodic orbits for a given dynamical system		
Course Cor	ntent:			
Unit-I	Linear Systems: Exponentials of operators, Planar linear systems and their phase portraits, complex eigenvalues, multiple eigenvalues, Jordon forms, Stability theory	15 Hours		
Unit-II	Generalized eigenvectors and invariant subspaces, Non- homogeneous linear systems, Nonlinear Systems: The fundamental existence-uniqueness theorem, The maximal interval of existence, The flow defined by a differential equation, Linearization, The stable manifold theorem, The Hartman-Grobman theorem	15 Hours		
Unit-III	Stability and Lyapunov functions, Saddles, Nodes, Foci and Centers, Center manifold and Normal form theory, Dynamical systems and global existence theorems, Limit sets and Attractors, Periodic orbits	15 Hours		
Unit-IV	Limit Cycles, and Seperatrix cycles, Poincare map, Stable manifold theorem for periodic orbits, Poincare- Bendixon theory in xy-plane, Lineard Systems, Bendixson's Criteria.	15 Hours		
Internal As	sessment:			
CIA*-1	Unit -I			
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit II and III			
EoSE**	Unit-I, II, III, IV			
	us Internal Assessment Semester Examination	1		

- 1. Perko L., 2006, Differential Equations and Dynamical Systems, Springer-Verlag.
- 2. Hirsch M. W., Smale S. and Robert L.D., 2013, *Differential Equations, Dynamical Systems and An Introduction to Chaos*, Academic Press.
- 3. Stuart A. M. and Humphries A. R., 1998, *Dynamical Systems and Numerical Analysis*, Cambridge University Press.
- 4. Lynch S., 2004, Dynamical Systems with Applications using MATLAB, Birkhause Press.
- 5. Lynch S., 2004, Dynamical Systems with Applications using MATLAB, Birkhause Press.

Reference Books:

6. Strogatz, S. H., 2000, Nonlinear Dynamics and Chaos with Applications to Physics, Biology, *Chemistry and Engineering*, Westview Press.

E-resources:

https://www.youtube.com/playlist?list=PLbN57C5Zdl6j_qJA-pARJnKsmROzPnO9V

https://www.youtube.com/watch?v=BRaliLNuvNg&list=PL6hB9Fh0Z1ELbHIAL22dCk173qykDgeoz

<u>Course-Code: MAT 545</u> <u>Course Title: Financial Mathematics</u>

Teaching Sch	neme	Examination Scheme	Credits Allotted
Theory: 3 hours/ week		EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3
Tutorial: 1 Ho	our/Week		Tutorial: 1
			Total: 4
Course Prere	equisite: The st	udent should have knowledge of	
1.	elementary M	athematics and Probability	
Course Obje	ctive:		
1.	To provide th	e theoretical foundations required to unders	tand the financial mathematics
2.	To make the students familiar with the concepts life insurance contracts.		rance contracts.
3.	To teach Black Scholes model and Black Scholes equation		
4.	To introduce Binomial methods and Monte Carlo simulation		
5.	To discuss finite difference methods		
Course Outco	tcomes: The students will be able to learn		
1.	theoretical foundations required to understand the financial mathematics		
2.	binomial methods		
3.	how to do Monte Carlo simulation		

4.	finite difference methods	
Course Con	ntent:	
Unit-I	Introduction to options and markets: types of options, interest rates and present values, Black Scholes model : arbitrage, option values, pay offs and strategies, put call parity, Black Scholes equation	15 Hours
Unit-II	Similarity solution and exact formulae for European options, American option, call and put options, free boundary problem, Binomial methods: option valuation, dividend paying stock, general formulation and implementation	15 Hours
Unit-III	Monte Carlo simulation : valuation by simulation, Lab component: implementation of the option pricing algorithms and evaluations for Indian companies, different concepts associated with Finite difference methods	15 Hours
Unit-IV	Finite difference methods: explicit and implicit methods with stability and conversions analysis methods for American options- constrained matrix problem, projected SOR, time stepping algorithms with convergence and numerical examples	15 Hours
Internal As	ssessment:	
CIA*-1	Unit -I	
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit II and III	
EoSE**	Unit-I, II, III, IV	
	us Internal Assessment Semester Examination	-
Text Books	:	
1. Lue	enberger D. G., 1998, Investment Science, Oxford University	Press.
2. Hul Yor	1 J. C., 2000, Options, <i>Futures and Other Derivatives</i> (-k.	4 th Ed.), Prentice-Hall New

- 3. Cox J. C. and Rubinstein M., 1985, Option Market, Englewood Cliffs, N. J. Prentice-Hall.
- 4. Jones C.P., 1996, *Investments, Analysis and Measurement (5th Ed.)*, John Wiley and Sons.
- 5. Capinski M., Zastawnaik T., Mathematics for Finance, Springer

Reference Books:

6. Wahidudin A.N., , 2000, Financial Mathematics and Its Applications, Ventus Publishing ApS

E-resources:

https://nptel.ac.in/courses/111103126

<u>Course-Code:</u> MAT546 <u>Course Title:</u> ADVANCED COMPLEX ANALYSIS				
Teaching Scheme	Examination Scheme	Credits Allotted		
Theory: 3 hours/ week	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3		
Tutorial: 1 Hour/Week		Tutorial: 1		
		Total: 4		
Course Prerequisite: The student should have knowledge of Complex Analysis.				
Course Objective:				
To teach some topics of contemporary complex analysis.				
To prepare the student to independent work in these topics				
To teach the methods of complex analysis in other areas of mathematics.				

Course Outcomes: The students will be able to learn					
basic tech	basic techniques of contemporary complex analysis				
applicatio	ons of these techniques in harmonic analysis				
univalent	functions theory and special functions.				
Course Co	ontent:				
Unit-I	Liouville's theorem and its different proofs, Picard's little theorem, Picard's great theorem, Week form of Picard's great theorem, Casorati-Weierstrass theorem, Harmonic conjugate, Transformation of harmonic functions, Transformations of boundary conditions.	15 Hours			
Unit-II	Applications of conformal mappings, Steady temperatures, Steady temperature in a half plane and related problems, Electrostatic Potentials, Potential in cylindrical space, Open mapping theorem, Hurwitz' theorem, Analytic continuation, Direct analytic continuation Poisson integral formula, Dirichlet problem.	15 Hours			
Unit-III	Infinite sums, Mittag-Leffler theorem, Infinite product of complex numbers, Convergence of infinite products, Infinite product of analytic functions, Factorization of entire functions, Gamma functions, Riemann Zeta functions, Euler product formula, Riemann Functional equations, Riemann hypothesis.	15 Hours			
Unit-IV	Univalent functions, Basic results of univalent functions, Class S , Area theorem, Biberbach theorem and conjecture, Koebe $1/4$ theorem, Riemann mapping theorem.	15 Hours			
Internal Assessment:					
CIA*-1	Unit -I, II				
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit III				
EoSE**	Unit-I,II,III,IV				
	ous Internal Assessment Semester Examination				

- 1. Brown J.W., and Churchill R.V., 2009, *Complex Variables and Applications*, McGraw Hill
- 2. Ponnusamy S., 2005, Foundations of Complex Analysis, Narosa Publication House.
- 3. Kasana H.S., 2005, Complex Variables: Theory and Applications, PHI.

Reference Book

1. Theodore G., 2003, Complex Analysis, Springer

E-resources:

https://archive.nptel.ac.in/courses/111/106/111106084/

Course Code: MAT547				
	Course Title: FUNCTIONS OF SEVERAL REAL VARIABLES			
Teaching	Scheme	Examination Scheme	Credits Allotted	
Theory: 3	hours/ week	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3	
Tutorial: 1	Hour/Week		Tutorial: 1	
			Total: 4	
Course Pr	erequisite: Studer	nts should have knowledge of		
1.	1. basic concepts of calculus of one variables			
Course Objectives:				
1	1 To explain how some concepts of calculus can be generalized in higher dimensions.			

2	To introduce multivariable calculus: different types of derivatives, chain rule, mean value theorem, maxima and minima, implicit and inverse function theorems.		
3	To explain how these generalized concepts impact inventions in science, technology and our daily life.		
Course O	utcomes: The students will be able to learn		
1.	how existing concepts of calculus of one variable or two variable can be higher dimensions	e generalized in	
2	the significance of the concepts defined and the theorems proved here;		
3	the importance of these generalized concepts impacts science, technology and our daily life.		
Course Co	ontent:		
Unit-I	R ⁿ as inner product and as normed space, convergence of sequences, compactness, equivalence of norms, connected and convex sets, Functions from R ⁿ to R ⁿ , limit and continuity, Directional derivatives, partial derivatives of a function of several real variables.	15 Hours	
Unit-II	Differentiability of a function of several real variables, sufficient conditions for continuity and differentiability of a function of several real variables in terms of partial derivatives, algebra of differentiable functions, Chain rule of differentiation, Total differentials.	15 Hours	
Unit-III	Mean value Theorem for real valued functions, homogeneous functions and Euler's Theorem, Equality of mixed derivatives, Young's and Schwarz Theorems, higher differentials, Taylor's Theorem.	15 Hours	
Unit-IV	Maxima and minima for real valued functions of several real	15 Hours	

	variables, (necessary and sufficient conditions), saddle points, Lagrange's multipliers, Hessian matrix, Jacobian matrix and determinants, Implicit and Inverse function Theorems, Functional dependence	
Internal A	Assessment:	
CIA*-1	Unit -I	
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit II and III	
EoSE**	Unit-I,II,III,IV	
	nous Internal Assessment f Semester Examination	
Text Bool	KS:	
1. La	ang S, 1987, Calculus of Several Variables, Springer-Verlag, New York.	
2. Fl	eming W. H., 1977, Functions of Several Variables, Springer-Verlag, Ne	w York.
	horpade S. R., Limaye B. V., 2010, A Course in Multivariable Caloringer, New York.	culus and Analysis,
Reference	e Books:	
Se 5. S _I	iaquinta M., Modica G. 2009, <i>Mathematical Analysis: An Introducta</i> everal Variables, Birkhauser, Boston. bivak M., 1965, Calculus on Manifolds: A Modern Approach to Cla dvanced Calculus, CRC Press.	

- **E-resources:**
 - $1. \ https://onlinecourses.nptel.ac.in/noc20_ma27/preview$

	<u>Course-Code:</u> MAT548 <u>Course Title:</u> LIE ALGEBRAS			
Teach	ing Scheme	Examination Scheme	Credits Allotted	
Theory	y: 3 hours/ week	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3	
Tutoria	al: 1 Hour/Week		Tutorial: 1	
			Total: 4	
Cours	e Prerequisite: Stud	ents should have knowledge of	I	
1.	concepts of line	ear algebra		
Cours	e Objectives:			
1	To teach the stu	To teach the students how to utilize various techniques for working with Lie algebras		
2	To teach the stu	To teach the students the parts of a major classification result		
3	To teach the stu	To teach the students the representations of sl(2, C)		
4	To teach the stu	To teach the students root Space Decomposition		
Cours	e Outcomes: Studen	ts will be able to learn		

1.	the construction of Lie algebra	
2	The low-dimensional Lie algebras	
3	The semisimple Lie Algebras	
4	The root system	
Course Co	ontent:	
Unit-I	Definition of Lie Algebras, Some Examples, classical Lie Algebras, Subalgebras and Ideals, Homomorphisms, Derivations, Structure Constants, Ideals and Homomorphisms, Constructions with Ideals, Quotient Algebras, Correspondence between Ideals,	15 Hours
Unit-II	Low-Dimensional Lie Algebras, Dimensions 1,2and3, Solvable Lie Algebras, Nilpotent Lie Algebras, Subalgebras of gl(V), Weights, The Invariance Lemma, Engel's Theorem, Lie's Theorem, Some Representation Theory, Definitions, Examples of Representations, Modules for Lie Algebras, Irreducible and Indecomposable Modules, Schur's Lemma	15 Hours
Unit-III	Representations of sl(2, C), Classifying the Irreducible sl(2, C)- Modules, Weyl's Theorem, Cartan's Criteria, Jordan Decomposition, Testing for Solvability, The Killing Form, Testing for Semisimplicity, Derivations of Semisimple Lie Algebras	15 Hours
Unit-IV	The Root Space Decomposition, Cartan Subalgebras, Subalgebras Isomorphic to sl(2, C), Root Strings and Eigenvalues, Cartan Subalgebras as Inner-Product Spaces, Root Systems, Bases for Root Systems, Cartan Matrices and Dynkin Diagrams	15 Hours
Internal A	Assessment:	
L		

CIA*-1	Unit -I, II	
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit III	
EoSE**	Unit-I,II,III,IV	
	ious Internal Assessment f Semester Examination	
Text Boo	ks:	
	1. Humphreys J. E., 1972, Introduction to Lie Algebras and Rep Springer-Verlag New York.	presentation Theory,
	2. Jacobson N., 1962, <i>Lie Algebras</i> , Wiley-Interscience, New York.	
	 Erdmann K. and Wilson M.J., 2006, Introduction to Lie Algebr New York. 	as, Springer-Verlag,
Reference	e Books:	
	1. Serre J. P., 1965, <i>Lie Algebras and Lie Groups</i> , Benjamin, New Yo	ork.
E-resour	ces:	
https://a	archive.nptel.ac.in/courses/	

	<u>Course-Code:</u> MAT549 <u>Course Title:</u> MODULE THEORY			
Teachin	ng Scheme	Examination Scheme	Credits Allotted	
Theory:	3 hours/ week	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3	
Tutorial	: 1 Hour/Week		Tutorial: 1	
			Total: 4	
Course	Prerequisite: The st	udent should have knowledge of	i	
1.	concepts of rings	and linear algebra		
Course	Objective:			
1	To teach the stude	To teach the students linear algebra over certain rings		
2	To teach the stude	To teach the students the basic definitions and elementary results		
3	To teach the stude	To teach the students the classification of finitely generated abelian groups		
4	To teach the stude	To teach the students Jordan Canonical form		
Course	Outcomes: The stud	ents will be able to learn		
1.	the concepts of is	omorphism theorems		
2	the projective and	the projective and injective modules		
3	the torsion and torsion-free modules			
4	the Jordan canoni	cal form		

Course C	Course Content:				
Unit-I	Modules over a ring, Endomorphism ring of an abelian group, R- Module structure on an abelian group M as a ring homomorphism from R to EndZ (M), submodules, Direct summands, Annihilators, Faithful modules, Homomorphism, Factor modules, Isomorphism theorems	15 Hours			
Unit-II	Free Module, Noethrian and Artinian Module, Hilbert basis theorem, Wedderburn Artin Theorem, Split exact sequences and their characterizations, Left exactness of Hom sequences and counterexamples for non-right exactness, Projective modules, Injective modules, Baer's characterization, Divisible groups, Examples of injective modules. (M, M) as a ring, Exact sequences, Five lemma,	15 Hours			
Unit-III	External and internal direct sums and their universal property, Submodules of finitely generated free modules over a PID, Torsion submodule, Torsion and torsion-free modules, Direct decomposition into T(M) and a free module, primary components, Decomposition of p-primary finitely generated torsion modules	15 Hours			
Unit-IV	Elementary divisors and their uniqueness, Decomposition into invariant factors and uniqueness, Reduction of matrices over polynomial rings over a field, Similarity of matrices and F[x]-module structure, Rational canonical form of matrices, Elementary Jordan matrices, Reduction to Jordan canonical form, Diagonalizable and nilpotent parts of a linear operator, Smith normal form over PID, Uniqueness of Smith normal form	15 Hours			
Internal A	Assessment:				
CIA*-1	Unit -I, II				
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit III				
EoSE**	Unit-I,II,III,IV				
	ous Internal Assessment Semester Examination				

1. Dummit D. S. and Foote R. M., 2003, Abstract Algebra, John Wiley NY.

2. Gopalakrishnan N. S., 1986, University Algebra, Wiley Eastern Ltd., New Delhi.

3. Lam T. Y., 2007, Exercises in Module and Rings, Springer.

Reference Books:

1. Anderson F. W. and Fuller K. R., 1974, *Rings and Categories of Modules*, Springer, N.Y.

E-resources:

https://archive.nptel.ac.in/courses/

<u>Course-Code: MAT 550</u> Course Title: NONLINEAR DYNAMICS & CHAOS			
Teaching Scheme	Credits Allotted		
Theory: 3 hours/ week	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3	
Tutorial: 1 Hour/Week		Tutorial: 1	

				Total: 4
Course Prero	Course Prerequisite: Students should have knowledge of			
1.	differential eq	uations and calculus		
Course Obje	ctives:			
1.	To provide kn	owledge of different top	ics in Nonlinear dyr	namics and chaos
2.	To teach one of	limensional systems and	l different types of b	ifurcations
3.	To introduce s and stability th		s and applications o	f one dimensional bifurcations
4.	To introduce two dimensional systems and associated bifurcations		rcations	
5.	To discuss one dimensional maps and different topics in chaos			
Course Outc	Course Outcomes: The students will be able to learn			
1.	different topics in nonlinear dynamics and chaos			
2.	bifurcations f	or one dimensional syste	em and associated ap	oplications
3.	bifurcation theory for two dimensional systems and application		cation	
4.	. different aspects associated with chaos and applications			
Course Cont	Course Content:			
Unit-I	Unit-I The importance of being nonlinear, A dynamical view of the world, One dimensional flows: Flows on the lines: a		15 Hours	

	geometric way of thinking, Fixed points, Local stability analysis, Overdamped beam on a rotating hoop, Existence and Uniqueness, Impossibility of oscillations, Potentials, Bifurcations: Saddle-node bifurcations, Transcritical and Pitchfork bifurcations, Supercritical and Subcritical Pitchfork bifurcations, Laser threshold, Imperfect bifurcations and Catastrophes	
Unit-II	Insect outbreak: Model, Dimensionless formulation, Analysis of fixed points, Two dimensional flows: Linear systems, Definitions and examples, Classification of linear systems, Dynamics of love affairs, Rabbit Versus Sheep, Conservative Systems, Limit cycles, Ruling out closed orbits, Poincare-Bendixson theorem, Lienard systems, Weakly nonlinear oscillators,	15 Hours
Unit-III	Bifurcations in case of two dimensional systems, Hopf- bifurcations in aeroelastic stabilities and chemical oscillators, Global bifurcations of cycles, chaotic waterwheels, waterwheel equations and Lorentz equations, Chaos in the Lorentz equations, Strange attractor of Lorentz equations	15 Hours
Unit-IV	One dimensional map, Universal aspects of periodic doubling, Feigenbaum's renormalization analysis and periodic doubling, Renormalization: Function space and hands-on calculation, Fractals and the geometry of strange attractors, Henon map, Using chaos to send secret messages	15 Hours
Internal Asse	essment:	
CIA*-1	Unit -I	
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit II and III	
EoSE**	Unit-I, II, III, IV	
	Internal Assessment mester Examination	

1. Strogatz S., 2001, Nonlinear Dynamics and Chaos, Springer.

2. Ermentrout B., 2005, Simulating Analyzing and Animating Dynamical Systems, SIAM.

- 3. Hirsch M. W., Smale S. and Devaney R. L., 2002, *Differential Equations, Dynamical Systems and an Introduction to Chaos*, Academic Press.
- 4. Guckenheimer J. and Holmes P., 2000, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer, New York.

Reference Books:

6. Percival I., Richards, D., 1982, Introduction to Dynamics, Cambridge University Press

7. Guckenheimer J. and Holmes P., 2000, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer, New York.

E-resources:

https://www.youtube.com/playlist?list=PLbN57C5Zdl6j_qJA-pARJnKsmROzPnO9V

<u>Course-Code:</u> MAT551 <u>Course Title:</u> FIELDS AND GALOIS THEORY			
Teaching Scheme	Examination Scheme	Credits Allotted	

Theory: 3	hours/ week	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3	
Tutorial: 1 Hour/Week			Tutorial: 1	
			Total: 4	
Course P	rerequisite: Studer	nts should have knowledge of		
1.	groups and rings			
Course O	bjective:			
1	To teach the stude	ents symmetries of roots of a polynomial		
2	To teach the stude	ents the solubility in terms of simple algebra	aic formulae	
3	To teach the students the algebraic properties of field extensions			
4	To teach the students geometric problems such as doubling the cube		he cube	
Course O	utcomes: Students	will be able to learn		
1.	the algebraic exte	ension		
2	the splitting field			
3	the Finite field			
4	the construction of regular polygon			
Course C	Course Content:			

Unit-I	Eisenstein's irreducibility criterion, Characteristic of a field, Prime subfields, Field extensions, Finite extensions, Simple extensions, Algebraic and transcendental extensions. Factorization of polynomials in extension fields. Splitting fields and their uniqueness.	15 Hours		
Unit-II	Separable field extensions, Perfect fields, Separability over fields of prime characteristic, Transitivity of separability, Automorphisms of fields, Dedekind's theorem, Fixed fields, Normal extensions, Splitting fields and normality, normal closures,	15 Hours		
Unit-III	Galois extensions, Fundamental theorem of Galois theory, Computation of Galois groups of polynomials., Primitive element theorem, Finite fields, Existence and uniqueness, Subfields of finite fields, Characterization of cyclic Galois groups of finite extensions of finite fields, fundamental theorem of algebra	15 Hours		
Unit-IV	Cyclotomic extensions and polynomials, cyclic extensions, Solvability by radicals, Galois' characterization of such solvability, Generic polynomials, Abel-Ruffini theorem, geometrical constructions, construction of real number by ruler and compass, Impossibility of trisection of angle, Construction of regular polygon	15 Hours		
Internal A	Assessment:			
CIA*-1	Unit -I, II			
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit III			
EoSE**	Unit-I,II,III,IV			
	*: Continuous Internal Assessment **: End of Semester Examination			
Text Books:				
	1. Dummit D. S. and Foote R. M., 2003, <i>Abstract Algebra</i> , John Wiley & Sons, New York.			
	2. Hungerford T. W., 2004, <i>Algebra</i> , Springer (India), Pvt. Ltd.			

3.	Roman S	., 2007,	Field Theo	ry, Springer,	New York.
		., ,		· /, ~r8;	

4. Stewart I. N., 2004, Galois Theory, Chapman & Hall, New York.

Reference Books:

1. Artin E., 1997, Galois Theory, Dover Publications.

E-resources:

https://archive.nptel.ac.in/courses/

<u>Course-Code: MAT552</u> <u>Course Title: Operations Research</u>			
Teaching Sch	neme	Examination Scheme	Credits Allotted
Theory: 3 hou	urs/ week	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3
Tutorial: 1 Ho	our/Week		Tutorial: 1
			Total: 4
Course Prere	Course Prerequisite: Students should have knowledge of		
1.	mathematical programming		
2.	probability theory		
Course Objective:			

1				
1.	To teach how to determine an optimal sequence out of a series of jobs.			
2.	To teach the PERT/CPM techniques to plan, schedule, and control project activities.			
3.	To teach solution methodologies for deterministic and pr	obabilistic inventory models.		
4.	To introduce the basic concepts of stochastic processes.			
5.	To teach what is a queueing model and how to analyze so	me specific queueing models.		
Course Out	tcomes: Students will be able			
1.	to find the optimal job sequencing.			
2.	to get a deep understanding of the PERT/CPM techniques project activities.	s to plan, schedule, and control		
3.	to learn deterministic and probabilistic inventory models.			
4.	to learn the basic concepts of stochastic processes.			
5.	to learn the theory behind queueing models and to characterize a queue & its key performance indicators.			
Course Cor	ourse Content:			
Unit-I	Job sequencing: Principal assumptions, processing n jobs through m machines. Project management by PERT-CPM technique: Network representation, critical path computations, construction of the time schedule, project evaluation and report technique.	15 Hours		
Unit-II	Deterministic inventory models: General Inventory models, static economic order quantity (EOQ) model, dynamic EOQ models, deterministic models with price breaks. Review of Probability theory, Probabilistic Inventory models, Probabilistic EOQ model, Single period model.			
Unit-III	Stochastic processes, Classification and its properties, Markov process, types of Markov processes, infinitesimal generator matrix, transition probability matrix, steady state distributions, transient distributions.			
Unit-IV	Queueing models: Elements of Queueing models, Kendall notations, Poisson process, pure birth model,	15 Hours		

	pure death model, birth-death model, Chapman- Kolmogorov equations, Little's Law, distribution of waiting time and response time, Burke's Theorem, M/M/1 model, M/M/1/N models.	
Internal As	sessment:	
CIA*-1	Unit -I	
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit II and III	
EoSE**	Unit-I,II,III,IV	
*: Continuous Internal Assessment **: End of Semester Examination		
Text Books:		

- 1. Castaneda L. B., Arunachalam V. and Dharmaraja S., 2012 Introduction to Probability and Stochastic Processes with Applications, Wiley, Hoboken, NJ, USA.
- 2. Hillier F. S., Lieberman G. J., Nag B. and Basu P., 2012, *Introduction to Operations Research*, Tata McGraw Hill Education Pvt. Ltd.
- 3. Taha H. A., 2007, Operations Research-An Introduction, Prentice Hall of India Pvt. Ltd.
- 4. Trivedi K.S., 2016, *Probability and Statistics with Reliability, Queuing and Computer Science Applications*, John Wiley & Sons, Inc., Hoboken, NJ, USA.

Reference Books

- 1. Trivedi K.S., 2016, *Probability and Statistics with Reliability, Queuing and Computer Science Applications*, John Wiley & Sons, Inc., Hoboken, NJ, USA.
- 2. Medhi J., 2009, *Stochastic Processes (3rd Ed.)*, New Age International Publishers.

E-resources:

1.https://archive.nptel.ac.in/courses/111/107/111107128/

<u>Course-Code:</u> MAT553 <u>Course Title:</u> REPRESENTATION THEORY OF FINITE GROUPS			
Teaching	Scheme	Examination Scheme	Credits Allotted
Theory: 3	hours/ week	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3
Tutorial: 1	Hour/Week		Tutorial: 1
			Total: 4
Course Pr	rerequisite: Studer	nts should have knowledge of	
1.	concepts of group	os and module	
Course O	bjective:		
1	To teach the students the representation theory of finite groups		
2	To teach the stude	ents the finite dimensional algebras	
3	To teach the stude	ents Maschke's Theorem	
4	To teach the students the character of the representation		
Course Outcomes: Students will be able to learn			
1.	the concepts of Fa	aithful Representation	
2	the group algebra		

3	the Schur's lemma	
4	the character of the representation	
Course C	ontent:	
Unit-I	Representation of into group of Matrices, Examples, Faithful Representation, Equivalent Representation, FG-module, Equivalent formulation of Representation as FG module,	15 Hours
Unit-II	Permutation module, FG-submodule, Irreducible Representation, Group algebra, Regular FG-module, Action of FG on FG-module, FG-homomorphism, FG-isomorphism, Direct sum of FG-submdule	15 Hours
Unit-III	Maschke's Theorem, Completely reducible FG-submodule, Schur's Lemma and its application, Representation of abelian groups, Irreducible submodules of CG-module, Composition factor,	15 Hours
Unit-IV	Character of the representation, class function, Character table, irreducible characters, degree of character, regular and permutation character, Orthogonality relation between characters.	15 Hours
Internal A	Assessment:	
CIA*-1	Unit -I, II	
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit III	
EoSE**	Unit-I,II,III,IV	
	uous Internal Assessment f Semester Examination	
Text Boo	ks:	
	1. Burrow M., 1965, Representation Theory of Finite Groups, Acader	nic Press.

- 2. Jacobson N., 1983, Basic Algebra-II, Hindustan Publishing Corporation, New Delhi
- 3. Lang S., 2004, *Algebra (3rd Ed.)*, Springer.
- 4. Serre J. P., 1977, Linear Representation of Groups, Springer-Verlag.

Reference Books:

1. Dornhoff L., 1971, *Group Representation Theory-Part A*, Marcel Dekker, Inc., New York.

E-resources:

https://archive.nptel.ac.in/courses/

<u>Course-Code:</u> MAT554 <u>Course Title:</u> SPECIAL FUNCTIONS		
Teaching Scheme	Examination Scheme	Credits Allotted
Theory: 3 hours/ week	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3
Tutorial: 1 Hour/Week		Tutorial: 1
		Total: 4
Course Prerequisite: The student should have knowledge of Complex Analysis.		
Course Objectives: To demonstrate		

the fundamentals of special functions including Gamma functions,

Riemann Zeta functions, Hypergeometric functions, Generalized Hypergeometric functions

Bessel functions, Legendre polynomials, Hermite Polynomials and Laguerre Polynomials.

Course Outcomes: Students will be able to learn

Gamma functions

Hypergeometric functions

Basic theory, property and applications of special functions

Course Content:			
Unit-I	Infinite product of complex numbers, Factorization of entire functions, Gamma functions, Order symbols o and O, Beta functions, Euler reflection formula, Factorial function, Legendre's duplication formula, Gauss's multiplication formula, Integral representations for Gamma function and Beta functions, Walli's products, Stirling formula.	15 Hours	
Unit-II	Asymptotic expansion, Riemann Zeta functions, Euler product formula, Riemann Functional equations, Riemann hypothesis, Gauss Hypergeometric Function, Elementary Properties, Conditions of convergence, Contiguous function relations, Integral Representation, Simple transformation, Quadratic transformation.	15 Hours	
Unit-III	Generalized Hypergeometric Functions, Integral representation, Elementary Properties, Integral Representation, Legendre polynomials and functions, Solution of Legendre's differential equations, Generating Functions, Rodrigue's Formula,	15 Hours	

	Orthogonality of Legendre polynomials, Recurrence relations.	
Unit-IV	Bessel functions, Bessel differential equation and it's solution, Recurrence relation, Generating functions, Integral representation, Hermite Polynomials, Laguerre Polynomials.	15 Hours
Internal A	Assessment:	
CIA*-1	Unit -I, II	
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit III	
EoSE**	Unit-I,II,III,IV	
	nous Internal Assessment f Semester Examination	
Text Bool	ks:	
 B C A 	ainville E. D., 1960, Special Functions, The MacMillan Comp. ell W.W., 1968, Special Functions for Scientists and Engineers, D. omp. Ltd. ndrews G.E., Askey R. and Roy R., 1999, Special Functions Vathematics and Its Applications, Cambridge University Press.	
E-resourc	ces:	

<u>Course-Code: MAT-555</u> Course Title: Mathematics for Machine Learning		
Teaching Scheme	Examination Scheme	Credits Allotted
Theory: 3 hours/ week	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3

L

Practical	: 2 Hours/Week			Practical: 1
				Total: 4
Course	Prerequisite: The studer	t should have knowledge of		
1.	Basic knowledge in C	Basic knowledge in Calculus, LInear Algebra and Probability Theory		
2.	Basic knowledge in p	Basic knowledge in python programming		
Course	Objective:			
1	To teach about Princip	pal Component Analysis and Linear I	Discriminant	Analysis.
2	To teach about different regression methodologies			
3	To teach various optimization methodologies.			
4	To teach support vector machines.			
Course	Outcomes: The students	will be able to		
1.	apply theoretical and	numerically PCA and LDA.		
2	understand regression techniques.			
3	find the optimal solut	on by different optimization methodo	ologies.	
4	apply the concept of s	upport vector machines in real life pr	oblems.	
Course Content:				
Unit-I	Transformations, Ort Eigenvalues and Ei Spectral Decompositi	f Calculus and Linear Algeb hogonal Complement and Projection genvectors, Special Matrices and on, Singular Value Decomposition, cipal Component Analysis, Linear D	n Mapping, Properties. Low Rank	11 Hours Theory and 8 Hours Lab

	Analysis, Python Implementation of these methodologies.	
Unit-II	Review of Probability Concepts, Least Square Approximation and Minimum Normed Solution, Linear and Multiple Regression, Logistic Regression, Python Implementation.	11 Hours Theory and 7 Hours Lab
Unit-III	Introduction to Optimization, Convex sets and convex functions, properties of convex functions, Various Optimization algorithms: Gradient Descent and others, Python Implementation of Optimization.	11 Hours Theory and 8 Hours Lab
Unit-IV	Discrete and continuous distribution functions, joint probability and covariance, Separating Hyperplanes, Primal and Dual Support Vector Machines, Kernels and Python Implementation.	12 Hours Theory and 7 Hours Lab
Internal	Assessment:	
CIA*-1	Unit -I	
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce	
EoSE**	Unit-I,II,III,IV	
	nuous Internal Assessment of Semester Examination	1
Text Boo	oks:	
N 2. A 3. N 4. F	Cheney W., 2001, Analysis for Applied Mathematics, New York: Spring Medias. Axler S., 2015, Linear Algebra Done Right (3 rd Ed.), Springer International Pu Nocedal J. and Wright S. J., 2006, Numerical Optimization, New York: Sprin Media. Rosenthal J. S., 2006, A First Look at Rigorous Probability Theory (2 nd Ed Scientific Publishing.	ıblishing. ger Science+Busines
Reference	ce Books:	
	Deisenroth M.P., Faisal A.A. and Ong C.S., 2020, <i>Mathematics For</i> Cambridge University	Machine Learning
E-resour	rces:	
1. h	https://archive.nptel.ac.in/courses/111/107/111107137/	

Summer Internship (at least 6 weeks) (TO BE WRITTEN)

Major Project Dissertation in Mathematics (TO BE WRITTEN)

CC - Core Course	72 Credits
AECC – Ability Enhancement Compulsory Course	16 Credits

Total Credits of Core Courses	72+16=88 Credits
DE- Departmental Specific Elective Courses offered by the Department	32 Credits
GE - Generic Elective Courses offered by any department of the University	24 Credits
Total Credits of Elective Courses	56 Credits
MOOC	16 Credits