Central University of Rajasthan School of Mathematics, Statistics & Computational Sciences Department of Mathematics

Details of Revised/New Structure and Syllabus of Integrated M.Sc. B.Ed. w.e.f. 2023

POs (Programme Outcomes)

Students should be able to:

PO 1. Knowledge: Apply the knowledge of mathematics and science to the solution of complex mathematical problems.

PO 2. Problem analysis: Identify, formulate and analyze complex mathematical problems using mathematical principles.

PO 3. Development of solution: Formulate solutions for the complex mathematical problems, process, and its components.

PO 4: Conduct investigation of complex problems: Use research methods including design of experiment, analysis and observation of results to investigate and solve complex problems.

PO 5: Tool and software usages: Create, select and apply appropriate mathematical techniques, resources and software tools including modeling and prediction to complex mathematical models.

PO 6: Environment and sustainability: Understand the role of mathematics and its impact in societal and environmental contexts and demonstrate the knowledge of, and need for sustainable development.

PO 7: Individual and teamwork: Function effectively as an individual and as a member of team.

PO 8: Life-long learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PO 9. Teaching and learning skill: Expert in teaching and learning skills with interest in innovation and research in mathematics and education.

PO 10. Carrier Opportunities: Having opportunity to start career in academics and research institutions.

Mapping from Mission to Programme Outcomes

The mapping is based on marks 1 to 3, where "1" indicates low level matching of mission with programme outcome, "2" indicates medium level matching, and "3" indicate high level matching.

PO/Mission	M 1	M 2	M 3
PO 1	2	2	3
PO 2	2	2	2
PO 3	1	2	2
PO 4	1	3	3
PO 5	2	3	3
PO 6	3	1	2
PO 7	3	2	2
PO 8	3	2	2
PO 9	3	2	3
PO 10	2	3	3

Mapping from Programme Outcomes to Courses

The mapping is based on marks 1 to 3, where "1" indicates low level matching of course outcome with programme outcome, "2" indicates medium level matching, and "3" indicate high level matching.

	PO									
Course/PO	1	2	3	4	5	6	7	8	9	10
MAT401	3	3	3	2	1	1	1	1	1	2
MAT402	3	3	3	2	1	1	1	1	1	2
MAT403	3	3	2	2	1	1	1	1	1	2
EDU401	2	1	1	1	1	2	2	2	3	2
EDU402	2	2	1	1	1	2	2	2	3	2
MAT404	3	3	3	2	1	1	2	1	1	2
MAT405	3	3	3	2	1	1	2	1	1	2
MAT406	3	3	2	1	1	1	2	1	1	2
MAT407	3	3	3	2	1	1	2	1	1	2
MOOC										

EDU403	3	3	2	2	1	2	2	3	3	2
EDU404	3	2	1	1	1	2	2	1	3	3
MAT501	3	3	3	1	1	1	2	3	1	2
MAT502	3	1	3	3	3	1	3	3	1	3
MAT503*										
EDU501	3	2	2	1	1	2	3	2	3	3
EDU502	3	1	1	1	1	2	2	2	3	3
MAT582	2	1	1	1	2	1	2	2	2	2
MAT505	3	3	3	2	1	1	2	2	1	2
MAT556*										
EDU503	3	1	1	1	1	2	3	1	3	3
EDU504	3	2	2	1	1	1	2	3	3	3
MAT531	3	3	3	2	1	2	2	3	1	2
MAT532	3	3	3	2	1	1	2	2	1	2
MAT533	3	3	3	1	1	1	2	2	1	2
MAT534	3	1	2	2	1	1	2	2	1	2
MAT535	3	3	2	1	1	1	1	2	1	2
MAT536	3	1	2	2	3	3	2	2	1	2
MAT537	3	3	3	3	1	1	2	3	1	2
MAT538	3	3	3	2	2	1	2	2	1	2
MAT539	3	3	3	3	2	1	2	2	1	2
MAT540	3	3	2	2	1	1	2	2	1	2
MAT541	3	2	3	2	3	1	2	3	1	2
MAT542	3	2	3	2	3	1	2	3	1	2
MAT543	3	3	3	2	1	1	2	3	1	2
MAT544	3	3	3	2	2	1	2	2	1	2
MAT545	3	1	2	2	1	2	3	3	1	2
MAT546	3	3	3	3	1	1	2	2	1	2
MAT547	3	3	3	1	1	1	2	2	1	2
MAT548	3	3	3	2	1	1	2	2	1	2
MAT549	3	2	3	2	2	1	2	2	1	2
MAT550	3	3	3	2	1	2	2	2	1	2
MAT551	3	3	3	2	1	1	2	2	1	2
MAT552	3	1	2	3	2	1	2	3	1	2
MAT553	3	3	3	2	1	1	2	2	1	2
MAT554	3	2	2	3	1	1	2	2	1	2
MAT555	3	2	2	3	3	1	2	3	1	3

LEVEL-4

Seme	Semester-I (Integrated M.Sc. B.Ed)								
S. No.	Course Code	Course Title	Type of Course (C/E)	L	Т	Р	Credits		
1	MAT401	Linear Algebra	CC	3	1	0	4		
2	MAT402	Real Analysis	CC	3	1	0	4		
3	MAT403	Topology	CC	3	1	0	4		
4		Elective Paper (Subjective)	DE	3	1	0	4		
5		Elective Paper	DE	1	0	1	2		
6	EDU 401	Basics of Education	CC	3	0	0	3		
7	EDU 402	Senior Secondary Education in India: Status, Challenges & Strategies	CC	3	0	0	3		
	Total					1	24		

Semo	Semester-II (Integrated M.Sc. B.Ed)								
S. No.	Course Code	Course Title	Type of Course (C/E)	L	Т	Р	Credits		
1	MAT404	Complex Analysis	CC	3	1	0	4		
2	MAT405	Mathematical Programming	CC	3	1	0	4		
3	MAT406	Abstract Algebra	CC	3	1	0	4		
4	MAT 407	Qualitative Theory of Ordinary Differential Equations	CC	3	1	0	4		
5	MOOC	МООС	GE	2	0	0	2		
6	EDU403	Philosophy of Mathematics	CC	3	0	0	3		
7	EDU404	Learner and Learning	CC	3	0	0	3		
	Total					0	24		

<u>Course-Code: MAT-401</u> <u>Course Title: Linear Algebra</u>						
Teaching	Teaching Scheme Examination Scheme					
Theory: 3	hours/ week	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3			
Tutorial:	l Hour/Week		Tutorial: 1			
			Total: 4			
Course P	rerequisite: The st	udent should have knowledge of				
1.		Linear Algebra and Matrices: System of linear equation	ons, Matrices, Rank,			
Course O	bjectives:					
1		the fundamental notions of algebra of linear and different canonical forms	transformations,			
2	To teach the stude	ents different characterization of diagonalization of a	linear operator			
3	To introduce the	concept of orthonormal basis and their existence				
4	-	onal and orthonormal bases: Gram-Schmidt process s to solve application problems	and use bases and			
5	To introduce adjo	ints of linear operators, unitary and normal operators.				
Course O	Putcomes: The stud	ents will be able to				
1.	Learn algebra of	linear transformations, significance and use of eigenva	alue and eigenvectors			
2.	explain different	concepts about linear transformations and inner produ	ct spaces,			
3.	learn different cl transformation	naracterization of diagonalization and canonical for	ms of a given linear			
4		cepts associated with vector spaces, linear transformat spaces in other courses like functional analysis, diffe	-			
Course C	ontent:					
Unit-I		or spaces, The algebra of linear transformations, near functionals, Annihilator, Double dual, Transpose	15 Hours			

		T		
	of a linear transformation, Eigenvalues and Eigenvectors, and Eigenvectors.			
Unit-II	Unit-II Diagonalizability, Minimal Polynomial, Cayley Hamilton theorem. Invariant subspaces, Triangulability and Diagonalization in terms of the minimal polynomial, Direct-sum decompositions, Invariant direct sums.			
Unit-III	The primary decomposition theorem, Cyclic Subspaces And annihilators, Cyclic decomposition, Rational and Jordan forms. Symmetric and Skew-symmetric Bilinear Forms, Diagonalization of symmetric bilinear forms.	15 Hours		
Unit-IV	Inner product spaces: Best approximation, The adjoint of linear transformation, Unitary operators, Self adjoint, Normal operators, Spectral theorem for self adjoint operators.	15 Hours		
Internal A	Assessment:			
CIA*-1	Unit -I			
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit-II and III			
EoSE**	Unit-I,II,III,IV			
	ious Internal Assessment f Semester Examination	I		
Text Bool	ks:			
1. H	offmann K. and Kunze R., 1992, <i>Linear Algebra</i> , Prentice Hall of India.			
2. Fr	iedberg S. H., Insel A.J., Spence L.E., 2019, <i>Linear Algebra</i> , Pearson Ed	ucation.		
3. K	umaresan S., 2000, Linear Algebra: A Geometric Approach, Prentice Hal	ll of India.		
4. H	almos, P.R., 2011, Finite Dimensional Vector Spaces, Springer.			
5. La	ang, S., 2005, Introduction to Linear Algebra, Springer.			
Reference	e Books:			
	rtin M., 2010, <i>Algebra</i> , Pearson Education. poperstein B., 2015, <i>Advanced Linear Algebra</i> , CRC Press.			

E-resources:

https://archive.nptel.ac.in/courses/111/106/111106051/

	<u>Course-Code: MAT402</u> <u>Course Title: Real Analysis</u>						
Teaching S	cheme	Examination Scheme	Credits Allotted				
Theory: 3 h	ours/ week	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3				
Tutorial: 1 H	Hour/Week		Tutorial: 1				
			Total: 4				
Course Pre	requisite:						
1.	Basics of real a	nalysis, metric space and integral and differential ca	lculus.				
Course Obj	jectives: To deve	lop the concept of					
1.	understanding a Euclidean space	and applications of different aspects of the real nu $e \mathbb{R}^n$.	mber system \mathbb{R} , in the				
2.	Riemann-Stieltj	es integrability, properties of R-S integration and it	s applications.				
3.	uniform conver applications.	rgence of sequence and series of functions, solvin	ng problems and their				
4.		ion functions and their basic properties, developm nation and understanding of important associated res					
Course Out	tcomes: Students	will be able to					
1.	1. understand and analyze the different aspects of \mathbb{R} , in \mathbb{R}^n along with their applications.						
2.	solve the problems of Riemann-Stieltjes integration and will be able to apply/verify its properties.						
3.	understand and along with solv	apply the tests of uniform convergence of sequence ing problems.	and series of functions				

4.	verify the conditions of bounded variation functions along with a the concept of derivatives as linear transformation in \mathbb{R}^n and kno associated results.			
Course Co	ntent:			
Unit-I	Introduction to Euclidean space, Open ball, Open and closed sets, Adherent points, accumulation points and isolated points, Closure and derived sets, Bolzano Weierstrass theorem, Cantor intersection theorem, Lindeloff covering theorem, Heine-Borel theorem, Compactness in \mathbb{R}^n , Compact subsets of a metric space.			
Unit-II	Basics of Riemann-Stieltjes (R-S) integration, Existence of R-S integration, Conditions of R-S integrability, Properties of R-S integrals, First and second mean value theorems, Some important results on R-S integrability.	15 Hours		
Unit-III	Introduction to sequence and series of functions, Concept of pointwise and uniform convergence, Important tests for uniform convergence of a sequence and series of functions, Uniform convergence and continuity, Uniform convergence and integration, Uniform convergence and differentiation, Uniform convergence and R-S integration. Term by term differentiability and term by term integrability of series.	15 Hours		
Unit-IV	Functions of bounded variations and its properties, total variations. Continuity, partial derivatives, differentiability, derivatives of functions in an open set of \mathbb{R}^n into \mathbb{R}^n as a linear transformations, chain rule, Jacobians and its properties. Introduction to important theorems such as Inverse function theorem, Implicit function theorem etc.	15 Hours		
Internal A	ssessment:			
CIA*-1	Unit-I			
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit-II and III			
EoSE**	Written Exam. for Unit-I, II, III, & IV			
	Dus Internal Assessment Semester Examination	1		
Text Book	s:			
	masundaram, D. and Chaudhary, B., 2018, A First Course in Mat rrected Edition), Narosa Publishing House, New Delhi.	thematical Analysis (A		

- 2. Malik S. C. and Arora S, 2017, *Mathematical Analysis*, New Age Int. Ltd. Publishers, New Delhi.
- 3. Mapa, S.K., 2019, Introduction to Real Analysis, Levant Books, Kolkata.

Reference Books:

- 1. Rudin W., 2016, *Principles of Mathematical Analysis (3rd Ed.)*, McGraw Hill International Edition.
- 2. Apostol T. M., 1996, Mathematical Analysis (2nd Ed.), Narosa Publishing House, New Delhi.

E-resources:

- 1. <u>https://nptel.ac.in/courses/111106053</u>
- 2. <u>https://nptel.ac.in/courses/111106153</u>

<u>Course Code: MAT403</u> <u>Course Title: Topology</u>					
Teaching	Scheme	Examination Scheme	Credits Allotted		
Theory: 3	hours/ week	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3		
Tutorial:	1 Hour/Week		Tutorial: 1		
			Total: 4		
Course P	Prerequisite: The s	tudent should have knowledge of			
1.	Basic concepts o	f sets, relations			
2.	Basic concepts o	f functions and congruences			
Course O)bjectives:				
1	To provide motiv	vation for topology through geometry.			
2	To develop understanding of geometric and topological properties.				
3	To develop unde	rstanding of the concepts of general topology a	as simply as possible.		

2 3	what are objects of study in topology and geometry? students will absorb the concepts and topics in hand without haste; students will be able to understand the significance of the concep theorems proved here; The course will serve as a foundation for further study in analysis, in ge algebraic topology.	
3	students will be able to understand the significance of the concept theorems proved here; The course will serve as a foundation for further study in analysis, in ge algebraic topology.	
4	theorems proved here; The course will serve as a foundation for further study in analysis, in ge algebraic topology.	
	algebraic topology.	cometry and in
Course Co	ntent.	
course co		
Unit-I	Topological spaces. Open sets, closed sets. Interior points, Closure points. Limit points, Boundary points, Exterior points of a set, Closure of a set, Derived set, Dense subsets. Basis, sub base, Relative topology.	15 Hours
	Product space, Quotient space. Continuous functions, open & closed functions, homeomorphism, Lindelof space, Separable spaces, Connected Spaces, locally connectedness, Connectedness on the real line, Components, Path connected space,	15 Hours
Unit-III	Complete space, Compact Spaces, one point compactification, compact sets, properties of Compactness and Connectedness under a continuous function, Compactness, Equivalence of Compactness.	15 Hours
	Separation Axioms: T0, T1, and T2 spaces, examples and basic properties, First and Second Countable Spaces, Regular, normal, T3 & T4 spaces, Tychnoff spaces, Urysohn"s Lemma, Tietze Extension Theorem, Tychnoff Theorem.	15 Hours
Internal A	ssessment:	
CIA*-1	Unit -I	
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit-II and III	
EoSE**	Unit-I,II,III,IV	
	ous Internal Assessment Semester Examination	
Text Book	s:	

- 1. Simmons G. F., 1963, Topology and Modern Analysis, McGraw Hill.
- 2. Vicker, 1996, *Topology via Logic*, Cambridge University Press.
- 3. Munkers, J. R., 2015, Topology- A First Course, Pearson Education India.
- 4. Joshi, K.D., 2017, Introduction To General Topology, New Age International Private Limited.

Reference Books:

1. Kelley J. L., 2017, General Topology, Dover Publications Inc.

E-resources:

1. https://archive.nptel.ac.in/courses/111/106/111106159/

<u>Course-Code: MAT404</u> <u>Course Title: Complex Analysis</u>						
Teaching	Scheme	Examination Scheme	Credits Allotted			
Theory: 3	hours/ week	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3			
Tutorial:	1 Hour/Week		Tutorial: 1			
			Total: 4			
Course P	rerequisite:					
1		d have knowledge of complex numbers and their proper analysis and concepts of limit, continuity and different lex variables.				
Course O	Course Objectives:					
1.	To introduce some topics of contemporary complex analysis.					
2.	To provide a solic interesting direction	d, classical foundation for the subject while exposing ons.	trails leading off in			

3.	To prepare the student to work independently in these topics and especially to use the methods of complex analysis in other areas of mathematics.			
Course O	Outcomes: Students will be able to			
1.	learn the basic techniques of contemporary complex analysis as well as applications of these techniques in harmonic analysis, univalent functions theory and special functions.			
2.	evaluate integrals along a path, compute the Taylor and La determine the nature of the singularities and calculating residues.	urent expansions,		
3.	use of residue theorem to evaluate integrals.			
Course C	Content:			
Unit-I	Functions of a complex variable, Differentiability and Analyticity, Harmonic Functions, Contour integrals, Antiderivative, Cauchy theorem, Cauchy-Goursat theorem, Simply and multiply connected domains, Cauchy integral formula, Higher order derivatives, Morera's theorem.	15 Hours		
Unit-II	Cauchy's inequality, Liouville's theorem, Fundamental theorem of algebra, Maximum modulus principle, Minimum modulus principle, Taylor's series, Laurent series, Absolute and uniform convergence of power series, Weierstrass theorem for sequence of functions. Removable singularities, poles, order and singular part of a pole, Laurent expansions, essential singularities.	15 Hours		
Unit-III	Cauchy residue theorem, Residue at infinity, Evaluation of integrals, Definite integrals involving sines and cosines, Zeros of analytic functions, Uniqueness theorem, Zeros of polynomials, Argument principle, Rouche's theorem, Schwarz lemma, Schwarz-Pick lemma, Open mapping theorem.	15 Hours		
Unit-IV	Conformal mappings, Scale factor, Local inverses, Mappings by elementary functions, Bilinear transformation, Basic properties of Bilinear transformation, Fixed points, Cross-ratio, Mappings of half planes onto disks, Automorphisms of unit disk, Automorphism of half planes, Mappings by $w=log z$, Mappings by $w=sin z$, Mappings by z^2 and branches $\frac{1/2}{2}$ of z^2 .	15 Hours		
Internal A	Assessment:			
CIA*-1	Unit -I			

CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit-II and III			
EoSE**	Unit-I,II,III,IV			
	uous Internal Assessment f Semester Examination			
Text Boo	ks:			
H 2. P	- $ -$			
Referenc	Reference Books:			
1. R	1. Rudin W., 2006, Real and Complex Analysis (3rd Addition), Tata McGraw Hill.			
E-resour	E-resources:			

1. <u>https://archive.nptel.ac.in/noc/courses/noc21/SEM2/noc21-ma39</u>

Course-Code: MAT405 Course Title: Mathematical Programming				
Teachin	g Scheme	Examination Scheme	Credits Allotted	
Theory: (week	3 hours/	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3	
Tutorial: 1 Hour/Week			Tutorial: 1	
			Total: 4	
Course l	Course Prerequisite: The student should have knowledge of			
1.	basic Concepts of Linear Algebra			
2.	basic Concepts of Calculus			
Course Objectives:				

1	To teach the students the skills to formulate real-world problems as linear and nonlinear programs,		
2	To teach the students the theoretical principles of linear programming problems.		
3	To introduce different types of methodologies to solve linear programming problems, e.g., simplex method, dual simplex method, revised simplex method, branch and bound method, cutting plane method.		
4	To teach how to handle multi objective optimization problems	S.	
5.	To introduce the concept of dynamic programming		
б.	To introduce the concepts of nonlinear programming and its u	inderlying structure.	
Course (Dutcomes: The students will be able to understand		
1.	the theoretical foundations of simplex and revised simplex me	ethod.	
2	duality in LPP and Integer LPP.		
3	how to solve an optimization problem over recursion and a multi objective optimization problem.		
4	solution methodologies of nonlinear programming problems, specifically convex programming problems and quadratic programming problems.		
Course (Content:		
Unit-I	Review of Linear Programming Problems-Graphical Method and Simplex Method, Theoretical foundation of Simplex Method, Revised Simplex Method,	15 Hours	
Unit-II	Duality in linear programming problem, Primal-dual method, Duality theorems, Dual simplex method; Post optimality analysis. Integer Linear programming, Gomory's Cutting Plane Method, Branch & Bound Method, Integer Programming Duality,		
Unit-III	Dynamic Programming, Bellman's principle of optimality, Applications of dynamic programming, Multi-objective optimization problem, Goal Programming. Nonlinear programming, Solution of nonlinear programming problems with equality constraints and with not all equality constraints.		
Unit-IV	Convex Programming Problem, Constraint qualification, Lagrange Multiplier method, Kuhn-Tucker necessary and sufficient conditions for optimality of the objective function in NLPP. Quadratic programming, Wolfe's method and	15 Hours	

	Beale's Method, Separable Programming.
Internal	Assessment:
CIA*-1	Unit -I
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit II and Unit III
EoSE**	Unit-I, II, III, IV
	nuous Internal Assessment of Semester Examination
Text Bo	oks:
4. H 5. H	 Chandra S., Jayadeva and Mehra A., 2009, Numerical Optimization with Applications, Narosa Publishing House Pvt. Ltd. Hadley G., 1987, Linear Programming, Narosa Publishing House Pvt. Ltd. Faha H. A., 2007, Operations Research-An Introduction, Prentice Hall of India Pvt. Ltd. Hillier F. S., Lieberman G. J., Nag B. and Basu P., 2012, Introduction to Operations Research, Fata McGraw Hill Education Pvt. Ltd. Bazaraa M.S., Sherali H.D. and Shetty C.M.,2006, Nonlinear Programming Theory and Algorithms, Wiley.
Referen	ce Books:
I	Bertsimas D. and Tsitsiklis J.N., 1997, <i>Introduction to Linear Optimization</i> , Athena Scientific, Belmont, Massachusetts. Bradley, H., Magnanti, 1977, <i>Applied Mathematical Programming</i> , Addison-Wesley
E-resour	rces:
	https://onlinecourses.swayam2.ac.in/cec22_ma17/ https://archive.nptel.ac.in/courses/111/107/111107128/

<u>Course-Code: MAT406</u> <u>Course Title: Abstract Algebra</u>		
Teaching Scheme	Examination Scheme	Credits Allotted

Theory: 3 hours/ week		EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3
Tutorial: 1 Hour/Week			Tutorial: 1
			Total: 4
Course P	rerequisite: The st	udent should have knowledge of	
1.	Basic Concepts o	f groups and rings	
Course O	bjectives:		
1	To teach the stude	ents isomorphism theorems	
2	To teach the stude	ents the Sylow theorems	
3	To teach the stude	ents the properties of rings	
4	To teach the stude	ents Chinese remainder theorem	
Course O	utcomes: The stud	ents will be able to understand	
1.	the concepts of group action		
2	The class equation of groups		
3	The properties of solvable groups		
4	The arithmetic in		
Course C	ontent:		
Unit-I	Review of groups and properties, First and second Isomorphism 15 Hours theorems, Conjugacy relation, Group Action, Equivalent formulation of action as a homomorphism of G to Symmetric group, Stabilizer (Isotropy) subgroups		
Unit-II	Orbit decomposition, Class equation of an action, Conjugacy class equation, Transitive actions, core of a subgroup, Sylow subgroups, Sylow's Theorem I, II and III, p-groups and applications, Direct and inverse images of Sylow subgroups, Commutator subgroup, Normal and subnormal series, composition series, Jordan-Holder theorem.		15 Hours
Unit-III	Solvable groups	15 Hours	

	simplicity of An, Review of Rings and properties, Left and right ideal, prime ideals, maximal ideals, Prime and irreducible elements, Divisibility in an Integral Domain, Units and Associates, Irreducible elements				
Unit-IV	Greatest Common divisor, Least Common Multiple, Euclidean domains, Maximal and prime ideals, Principal ideal domains, Divisor chain condition, Unique factorization domains, Examples and counterexamples, Chinese remainder theorem for rings and PID's, Polynomial rings over domains, Unique factorization in polynomial rings over UFD's.	15 Hours			
Internal A	Assessment:				
CIA*-1	Unit -I,II				
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit-III				
EoSE**	Unit-I,II,III,IV				
	ous Internal Assessment Semester Examination				
Text Bool	ΣS:				
	 Bhattacharya P. B., Jain S. K. and Nagpal S. R., <i>Basic Abstract Algebra (2nd Ed.)</i>, Cambridge University Press. 				
2. Gallian J. A., 1999, Contemporary Abstract Algebra, Narosa Publication House, New Delhi.					
3. A	3. Artin M., 2011, <i>Algebra</i> , Prentice Hall India, New Delhi.				
4. E	4. Dummit D. S. and Foote R. M., 2008, Abstract Algebra, Wiley India Pvt. Ltd.				
Reference Books:					
1. Robinson, D. J. S., 1996, A Course in the Theory of Groups, Springer New York, New York					
E-resourc	es:				
<u>https://a</u>	archive.nptel.ac.in/courses/				

<u>Course-Code: MAT407</u> <u>Course Title: Qualitative Theory of Ordinary Differential Equations</u>				
Teaching Scheme		Examination Scheme	Credits Allotted	
Theory: 3 hours/ week		EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3	
Tutorial: Hour/We			Tutorial: 1	
			Total: 4	
Course P	rerequisite	e: The student should have knowledge of		
1.		cepts in Linear Algebra and Real Analysis e.g., con onvergence, system of linear equations, matrices, d		
2.	elementar	y theory of ordinary differential equations		
Course C	bjectives:			
1.		luce the theory of existence and uniqueness the al equations.	eory of IVPs and system of	
2	To teach different types of boundary conditions and boundary value problems			
3.	To introduce stability theory of linear and nonlinear differential equations.			
4.	To develop some of the methods used to explore qualitative information about the behaviour of solutions of differential equations			
Course C	Outcomes: '	The students will be able to		
1.	explain different existence and uniqueness theorems for initial value problems			
2.	learn how to solve a given boundary value problem			
3.	use different analytical and geometrical methods to analyze the stability of solutions of a given differential equation			
4.	use how to use qualitative theory for modeling different real life problems via differential equations.			
Course Content:				
Unit-I	General existence and uniqueness theory: Well-posedness and examples of Initial Value Problems (IVPs), Gronwall's lemma, Basic lemma and uniqueness theorem, Picard's			

	existence and uniqueness theorem, Cauchy Peano existence theorem, Continuation of solutions.	
	meorem, Commutation of solutions.	
Unit-II	System of linear differential equations: existence and uniqueness theorem, homogeneous linear systems, Non- homogeneous linear system, Linear systems with constant coefficients, General system and diagonalization.	15 Hours
Unit-III	Boundary-value problems (BVPs): Different types of Boundary conditions and examples of BVPs, Green's functions, Sturm-Liouville BVPs: Characteristic values and characteristic functions, Orthogonality of characteristic functions,Expansion of a function in a series of orthonormal functions. System of nonlinear differential equations	15 Hours
Unit-IV	Autonomous system, equilibrium points and their stability, Paths of autonomous linear systems, Paths of nonlinear systems, Lyapunov functions and their construction, Limit cycles and Periodic solutions, Poincare-Bendixson theory.	15 Hours
Internal	Assessment:	
CIA*-1	Unit -I	
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit-II and III	
EoSE**	Unit-I,II,III,IV	
	uous Internal Assessment f Semester Examination	
Text Boo	ks:	
1. R	coss S.L., 2007, Differential Equations, Wiley.	
	Jandakumaran A.K., Dutti P.S. and George R.K., 2017, Or Principles and Applications, Cambridge University Press.	dinary Differential Equations:
	Brauer F. and Nohel J.A., 2005, <i>Qualitative Theory of Lublications</i> .	Differential Equations, Dover
	Coddington E.R. and Levinson N., 2010, <i>Theory of Ordinary L</i> Iill Education.	Differential Equations, McGraw
Referenc	e Books:	
1. N	lemytskii V.V., 2005, Qualitative Theory of Differential Equation	ions, Princeton University Press

E-resources:

https://nptel.ac.in/courses/111108081

LEV	LEVEL-4 (Electives)				
S. No.	Course Code	Course Title	Credit	Remarks	
1	MAT431	Biomathematics	4		
2	MAT432	Probability and Mathematical Statistics	4		
3	MAT433	Scientific Writing by LaTeX	2		
4	MAT434	Basic Programming in MATLAB	2		
5	MAT435	Numerical Analysis	4		
6	MAT436	Integral Transforms	4		
7	MAT437	Elementary Number Theory	4		
8	MAT438	Introduction to Space Dynamics	4		
9	MAT439	Fluid Dynamics	4		

<u>Course-Code: MAT-431</u> <u>Course Title: Biomathematics</u>			
Teaching Scheme	Examination Scheme	Credits Allotted	
Theory: 3 hours/ week	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3	

Tutorial:	1 Hour/Week		Tutorial: 1
			Total: 4
Course P	Prerequisite: The st	ident should have knowledge of	
1.	basic concepts in	elementary Calculus and Linear Algebra	
Course C)bjectives:		
1	To introduce basid different biologica	c principles, assumptions and hypotheses for mathema al systems	atical formulations of
2	To teach the stu interacting popula	idents the mathematical modeling of growth of s attions	single species and
3	To introduce the o	compartmental epidemic models e.g., SIR, SEIR and S	SIS
4	To discuss the analysis and bifur	dynamical analysis of different models using line cation theory	arization, stability
5	To introduce the r	nodeling of chemical kinetics.	
Course C	Dutcomes: The stude	ents will be able to	
1.		lifferential equations, dynamical systems, bifurcation biological system	n and stability theory
2.	model a particular	biological system and to predict its different dynamic	cal behaviour
3.	learn modeling an	d analysis of single species and interacting population	n models
4.	do modeling and	analysis of different compartmental epidemic models	
5.	predict the disease species	e burden and prevalence of a particular disease, long t	erm persistence of a
Course C	Content:		
Unit-I	biology. Idealiza Different types of	als and Challenges of mathematical modeling in tion and general principles of model building, E mathematical models in biology, Bacterial growth, natical techniques: Non-dimensionalization, Steady ation.	15 Hours
Unit-II	Review of linear	systems, Stability analysis, Phase diagrams, Single	15 Hours

	Species population models (discrete and continuous): Exponential,	
	Logistic, and Gompertz growth, Allee effect, Harvesting models and bifurcations, Delay models	
Unit-III	Models with interacting populations: Different types of interactions and examples, Lotka Volterra Competition, Predator-prey model, Chemostat models, Structured (spatial, age and sex) population models, Population biology of infectious diseases: Classification of infectious diseases, SIR, SIRS and SIS epidemic models,	15 Hours
Unit-IV	Basic reproduction number, Models for molecular events: Michaelis- Menten enzyme example, Timescale decomposition, Quasi steady state analysis, sigmoidal functions, multisite systems, Chemical kinetics: Mass action law, Hopf-bifurcations, Subcritical Hopf, Poincare-Bendixson-I, Poincare-Bendixson-II, Index Theory.	15 Hours
Internal A	Assessment:	
CIA*-1	Unit -I	
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit-II and III	
EoSE**	Unit-I, II, III, IV	
	uous Internal Assessment f Semester Examination	
Text Boo	ks:	
	rauer F. and Chavez C. C., 2000, <i>Mathematical Models in Popupidemiology</i> , Springer.	lation Biology and
2. K	ot M., 2001, Elements of Mathematical Ecology, Cambridge University P	ress.
3. K	eshet L. E., 2005, Mathematical Models in Biology, SIAM.	
	eeling M. J. and Rohani P., 2008, <i>Modeling Infectious Diseases in Hu</i> rinceton University Press.	umans and Animals,
5. M	Iartcheva M., 2010, An Introduction to Mathematical Epidemiology, Sprin	nger.
Reference	e Books:	
2. Si	Iurray J. D., 2007, <i>Mathematical Biology: An Introduction</i> , Springer. mith H., 2010, <i>An Introduction to Delay Differential Equations with ciences</i> , Springer.	Applications to Life
E-resour	99 5 .	

· ·	n.uci.edu/courses/math 113b intro to mathematical modeling in biolo om/playlist?list=PL5zWDs2j0YF3kPPvs4L5FGlLc7x13Uwjn	ogy.htmlhttps://www
<u>., </u>		

	<u>C</u>	<u>Course-Code: MAT432</u> ourse Title: Probability Theory and Math	ematical Statistics
Teaching	g Scheme	Examination Scheme	Credits Allotted
Theory: 3 week	3 hours/	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3
Tutorial: Hour/We			Tutorial: 1
			Total: 4
Course I	Prerequisite	: The student should have knowledge of	
1.	basic con	cepts of linear algebra and calculus	
Course (Objectives:		
1.		It the type of the data and tabulate statistical graphical techniques to interpret.	information given in descriptive form
2.		s probability, probability distributions, joint with random variable concepts.	probability distributions and concepts
3.	To explai	n essential tools for statistical analyses.	
4.	To discus	s the central limit theorem and order statistic	s.
Course (Dutcomes: S	Students will be able to	
1.	learn desc	criptive statistics and to calculate probability	for various types of problems.
2.	workout v	various probability distributions and statistica	l tools.
3.	explain o	rder statistics and central limit theorem	
Course (Content:		

Unit-I	Exploratory data analysis: summary statistics, box and whisker plots, histogram, P-P and Q-Q plots. Random Experiment and its sample space, probability as a set function on a collection of events, stating basic axioms, random variables, c.d.f., p.d.f., p.m.f.	15 Hours
Unit-II	absolutely continuous and discrete distributions, Some common distributions (Negative Binomial, Pareto, lognormal, beta, etc). Transformations, moments, m.g.f., p.g.f., quantiles and symmetry. Random vectors, Joint distributions, copula, joint m.g.f. mixed moments, variance covariance matrix.	15 Hours
Unit-III	Independence, sums of independent random variables, conditional expectation and variances, compound distributions, prior and posterior distribution, best predictors. Sampling distributions of statistics from univariate normal random samples, chi-square, t and F distributions.	15 Hours
Unit-IV	Order statistics and the distribution of rth order statistics, joint distribution of rth and sth order statistics. Statement and application of central limit theorem for a sequence of independent and identically distributed random variables.	15 Hours
Internal	Assessment:	
CIA*-1	Unit -I	
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit II and Unit III	
EoSE**	Unit-I, II, III, IV	
	uous Internal Assessment f Semester Examination	
Text Boo	ks:	

- Statistics (3^{rd} Ed.), John Wiley & Sons.
- Rao C. R., 1965, *Linear Statistical Inference and its Applications (2nd Ed.)*, John Wiley & Sons, INC.
- 4. Dharmaraja S. and Das D., 2018, Introduction to Statistical Methods, Design of Experiments and Statistical Quality Control, Springer.
- 5. Mayer P. L., 1970, Introductory Probability and Statistical Applications, Addison-Wesley.

Reference Books

1. Feller W., 2000, *An Introduction to Probability Theory and its Applications (3rd Ed.)*, Wiley Eastern.

E-resources:

- 1. https://archive.nptel.ac.in/courses/111/105/111105090/
- 2. https://archive.nptel.ac.in/courses/111/102/111102160/

		<u>Course-Code: MAT4</u> <u>Course Title: Scientific Writin</u>	
Teaching	Scheme	Examination Scheme	Credits Allotted
Theory: 1 week	hours/	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 1
Practical: Hours/We			Practical: 1
			Total: 2
Course P	rerequisite:	The student should have knowledge of	
1.	basic com	puter skills to downloads the required fi	les and programmes needed for the course
Course O	bjectives:		
1.	Installation	n of scientific typing tools and writing e	nvironment to create documents
2.	To introdu	ice typing tools e.g., LaTeX, Open office	e
3.	To introdu	ce different commands and mathematic	al symbols
4.	To discuss	s the use of template to create impressive	e documents for Master and PhD thesis
5.	To make s	tudents learn how to write equations, ple	ot graphs, and prepare presentations.
Course O	utcomes: S	tudents will be able to	
1.	learn how	to create a scientific document	

2.	write equations, letters and do different types of mathemat	ical calculations
3.	include Tables, Figures and Plots in a documents	
4	create professional presentations	
5.	cite a paper and build Bibliography	
Course C	ontent:	
Unit-I	Installing Latex and Class files, Creating first LaTeX document, creating documents in overleaf, Basic document spacing, Basic typesetting	11 Hours (4 Hours Theory and 7 Hours Practical)
Unit-II	mathematical Symbols and Commands, Writing of simple article, letters and applications, Mathematical symbols and commands, arrays, formulas and equations, Spacing, Borders and Colors	11 Hours (3 Hours Theory and 8 Hours Practical)
Unit-III	Figure environments, Subfigures, Tables, Latex presentations using Beamer, Creating different templates, Preparation of template of thesis and books	11 Hours (4 Hours Theory and 7 Hours Practical)
Unit-IV	Poster and CV templates, Pictures and Graphics, Bibliography, Writing of research articles and reports etc.	12 Hours (4 Hours Theory and 8 Hours Practical)
Internal A	Assessment:	
CIA*-1	Unit -I	
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit-II and III	
EoSE**	Unit-I, II,III & IV	
	ious Internal Assessment Semester Examination	
Text Bool	κs:	
	amport, L.W., 1994, <i>LaTeX: A document Preparation Systempany</i> .	tems, Addison-Wesley Publishing
2. K	opka, H., Daly, P.W., 2004, <i>Guide to LATEX</i> , Fourth Edition	n, Addison Wesley.

Referen	ce Books:	
1. 5	Shirore C., A Beginner guide to LaTex, Lullu.com	
E-resour	·ces:	
1. 2.	https://www.udemy.com/course/become-a-good-latex-user- https://www.overleaf.com/learn	to-create-professional-documents/

		<u>Course-Code: MAT4</u> Course Title: Basic Programmin	
Teaching	Scheme	Examination Scheme	Credits Allotted
Theory: 1 week	hours/	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 1
Practical: 1 Hours/We			Practical: 1
			Total: 2
Course Pr	rerequisite:	The student should have knowledge of	
1.	basic comp	outer skills to download the required fil	es and programmes needed for the course.
Course O	bjectives:		
1.	To introdu	ce students to computational methods u	using MATLAB
2.	To teach th	ne basis of computational techniques for	r solving ordinary differential equations
3.	To introdu	ce the use of MATLAB for numerical i	ntegration and interpolations
4.	To discuss	different types of plotting (2D, 3D, con	ntour etc.) using MATLAB
Course O	utcomes: St	udents will be able to	
1.	learn diffe	rent environment of MATLAB	

2.	do symbolic computations using MATLAB	
3.	solve a system of differential equations via MATLAB	
4.	learn different types of plotting namely, 2D, 3D, contour	etc.
5.	do numerical integration and interpolation with unequal i	ntervals
Course Co	ontent:	
Unit-I	The MATLAB Environment, MATLAB Basics: Variables, Numbers, Operators, Expressions, Input and output, Vectors, Arrays: Matrices. Built-in Functions and User defined Functions,	11 Hours (4 Hours Theory and 7 Hours Practical)
Unit-II	Files and File Management: Import/Export, Basic 2D, 3D plots, Graphic handling, Use of MATLAB in Matrix Addition, multiplication, subtraction. Symbolic Calculation-symbols, differentiation, integration, etc. Conditional Statements, Loops.	11 Hours (3 Hours Theory and 8 Hours Practical)
Unit-III	MATLAB Programs: Programming and Debugging. Mathematical Computing with MATLAB-Algebraic equations. Basic Symbolic Calculus and Differential equations, Ordinary Differential Equations: A first order and first degree ODE.	11 Hours (4 Hours Theory and 7 Hours Practical)
Unit-IV	Interpolation with equal Interval: Newton –Gregory forward and backward interpolation formula. Numerical Integration: Trapezoidal method, Numerical Integration: Simpson method (1/3 and 3/8).	12 Hours (4 Hours Theory and 8 Hours Practical)
Internal A	Assessment:	
CIA*-1	Unit -I	
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit-II and III	
EoSE**	Unit-I, II, III and IV	
	nous Internal Assessment f Semester Examination	
Text Bool	KS:	
1. Pr	ratap R., Getting started with MATLAB, Oxford University I	Press.

2. S. Lynch, 2014, Dynamical Systems with Applications using MATLAB, Birkhäuser.

3. Fousett, L.V., 2007, Applied Numerical Analysis using MATLAB, Pearson Education

4. Chapara S.C., Canale, R.P., 2006, Numerical Methods for Engineers, McGraw Hill

Reference Books:

1. Gilat A, 2012, MATLAB: An Introduction with Applications, Wiley

E-resources:

https://onlinecourses.nptel.ac.in/noc20_ge05/preview

		<u>Course-Code: MAT435</u> <u>Course Title: Numerical Analysis</u>	
Teac	hing Scheme	Examination Scheme	Credits Allotted
Theor	ry: 3 Hours/Week	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory:3
Tutor	ial: 1 Hour/Week		Tutorial: 1
			Total: 4
Cour	se Prerequisite: Stude	ents should have knowledge of	•
1.	differential calculus		
2.	difference operator, C	DDE	
Cour	se Objectives:		
1		nt numerical methods and their error to equations, initial value problems and eigenv	•

provide the numerical treatment for the BVP governed by ODE putcomes: Students will be able to ply a finite difference method to find the interpolation, differentiation and the given discrete data values. dlyze and choose the best suitable numerical method for the given m blem. ply the numerical techniques to solve research problems of fluid thematical modeling. ontent: Introduction to significant digits and errors, Solution of system of linear Equations (direct methods, Iterative methods, Ill-conditioned systems), Eigenvalue problem: Gershgorin circle theorem, power method, Jacobi method, Householder method. Finite difference operators, difference tables, Lagrange interpolation, Newton's divided difference interpolation, Hermite interpolation, Numerical solution of ordinary differential equations: initial value	nathematica
Dely a finite difference method to find the interpolation, differentiation and the given discrete data values. Dely a finite difference data values. Dely and choose the best suitable numerical method for the given method. Dely the numerical techniques to solve research problems of fluid thematical modeling. Dely the numerical techniques to solve research problems of fluid thematical modeling. Dely the numerical techniques to solve research problems of fluid thematical modeling. Dely the numerical techniques to solve research problems of fluid thematical modeling. Dely the numerical techniques to solve research problems of fluid thematical modeling. Dely the numerical techniques to solve research problems of fluid thematical modeling. Dely the numerical techniques to solve research problems of fluid thematical modeling. Dely the numerical techniques to solve research problems of fluid thematical modeling. Dely the numerical techniques to solve research problems of fluid thematical modeling. Dely the numerical techniques to solve research problems of fluid thematical modeling. Dely the numerical techniques to solve research problems of system of linear Equations (direct methods, Iterative methods, Ill-conditioned systems), Eigenvalue problem: Gershgorin circle theorem, power method, Jacobi method, Householder method. Finite difference operators, difference tables, Lagrange interpolation, Newton's divided difference interpolation, Hermite interpolation, Cubic spline interpolation.	athematica dynamics
the given discrete data values. Ilyze and choose the best suitable numerical method for the given moblem. oly the numerical techniques to solve research problems of fluid thematical modeling. Ontent: Introduction to significant digits and errors, Solution of system of linear Equations (direct methods, Iterative methods, Ill-conditioned systems), Eigenvalue problem: Gershgorin circle theorem, power method, Jacobi method, Householder method. Finite difference operators, difference tables, Lagrange interpolation, Newton's divided difference interpolation, Hermite interpolation, Cubic spline interpolation.	athematica dynamics
oblem. oly the numerical techniques to solve research problems of fluid thematical modeling. fontent: Introduction to significant digits and errors, Solution of system of linear Equations (direct methods, Iterative methods, Ill-conditioned systems), Eigenvalue problem: Gershgorin circle theorem, power method, Jacobi method, Householder method. Finite difference operators, difference tables, Lagrange interpolation, Newton's divided difference interpolation, Hermite interpolation, Cubic spline interpolation.	dynamics
 thematical modeling. ontent: Introduction to significant digits and errors, Solution of system of linear Equations (direct methods, Iterative methods, Ill-conditioned systems), Eigenvalue problem: Gershgorin circle theorem, power method, Jacobi method, Householder method. Finite difference operators, difference tables, Lagrange interpolation, Newton's divided difference interpolation, Hermite interpolation, Cubic spline interpolation. 	15 Hours
Introduction to significant digits and errors, Solution of system of linear Equations (direct methods, Iterative methods, Ill-conditioned systems), Eigenvalue problem: Gershgorin circle theorem, power method, Jacobi method, Householder method.Finite difference operators, difference tables, Lagrange interpolation, Newton's divided difference interpolation, Hermite interpolation, Cubic spline interpolation.	
 linear Equations (direct methods, Iterative methods, Ill-conditioned systems), Eigenvalue problem: Gershgorin circle theorem, power method, Jacobi method, Householder method. Finite difference operators, difference tables, Lagrange interpolation, Newton's divided difference interpolation, Hermite interpolation, Cubic spline interpolation. 	
Newton's divided difference interpolation, Hermite interpolation, Cubic spline interpolation.	15 Hours
Numerical solution of ordinary differential equations; initial value	
problems, existence and uniqueness of the solution of initial value problem, Single step methods- Taylor series, Picard's method, Euler's method, modified Euler method, Runge-Kutta method, Multi-step methods: Predictor-corrector method, Stability Analysis.	15 Hours
Boundary value problems (BVPs), Methods to solve BVPs: Finite- difference method, The Shooting method, The Cubic Spline method.	15 Hours
Assessment:	
Unit-I	
Written Exams/ Quizzes/Assignment/Presentation/Viva-Voce based on Unit-II and III	
Unit-I, II, III, IV	
	difference method, The Shooting method, The Cubic Spline method. Assessment: Unit-I Written Exams/ Quizzes/Assignment/Presentation/Viva-Voce based on Unit-II and III

Text Books:

- 1. Atkinson K. E., 1989, An Introduction to Numerical Analysis (2nd Ed.), Wiley-India.
- 2. Jain M. K., Iyengar S. R. K., Jain R. K., 2012, *Numerical Methods for Scientific and Engineering Computation* (6th Ed.), New Age International Publishers.
- 3. Sastry S. S. 2019, Introductory Methods of Numerical Analysis, PHI.

Reference Books:

1. Buchaman J. I., Turner P. R., 1992, Numerical Methods and Analysis, McGraw-Hill.

E-resources:

https://archive.nptel.ac.in/courses/111/107/111107105/

<u>Course-Code: MAT436</u> <u>Course Title: Integral Transforms</u>					
Teach	ning Scheme	Examination Scheme	Credits Allotted		
Theory: 3 Hours/Week		EoSE: 60 Marks Internal Assessment: 40 Marks	Theory:3		
Tutor	ial: 1 Hour/Week		Tutorial: 1		
			Total: 4		
Cour	Course Prerequisite: Students should have knowledge of				
1.	basic concepts of Differential Calculus				
2.	basic concepts of Integral Calculus				
Course Objectives:					

1	o describe the ideas of Laplace transform, Fourier transform, Z-transform and Wavelet ransform		
2	To familiarize the students with the applications of the Laplace and Fourier transforms in the fields such as application of PDE, Digital Signal Processing, Theory of wave quations.		
3	o familiarize the students with the applications of the Z-transform to solve the ifference equations.		
Cours	Se Outcomes: Students will be able to		
1	gain the idea that by applying the theory of Integral transform the problem from its original domain can be mapped into a new domain where solving problems becomes easier.		
2	pply these techniques to solve research problems of signal processing, data analysis and rocessing, image processing, in scientific simulation algorithms etc.		
3	pply these transform techniques to solve the physical problem governed by ODE, PDE nd difference equations.		
Course Content:			
Unit-I	Laplace Transform-Definition and its properties, Laplace transform of some standard functions, Existence conditions for the Laplace Transform, Shifting theorems, Laplace transform of derivatives and integrals, Inverse Laplace transform and their properties.	15 Hours	
Unit-I	I Laplace Transform—Convolution theorem, Initial and final value theorem, Laplace transform of periodic functions, error functions, Heaviside unit step function and Dirac delta function, Applications of Laplace transform to solve ODEs and PDEs.	15 Hours	
Unit-I	II Fourier transforms: Fourier integrals, Fourier sine and cosine integrals, Complex form of Fourier integral representation, Fourier transform, Fourier transform of derivatives and integrals, Fourier sine and cosine transforms and their properties, Convolution theorem, Applications of Fourier transforms to Boundary Value Problems.	15 Hours	
Unit-I	V Z-Transform: Z-transform and inverse Z-transform of elementary functions, Shifting theorems, Convolution theorem, Initial and final value theorem, Application of Z-transforms to solve difference equations.	15 Hours	

Internal Assessment:		
CIA*-I	Unit-I	
CIA*-II	Written Exams/ Quizzes/Assignment/Presentation/Viva-Voce based on Unit-II and III	
EoSE**	Unit-I, II, III, IV	
	uous Internal Assessment; of Semester Examination	
Text Boo	oks:	
	ath D., Dambaru, B., 2014, Integral Transforms and Their Applications, 's group, 2014.	Taylor and
2.John N 2008.	M. Wills, Integral Transforms in Applied Mathematics, Cambridge Univer	rsity Press,
3. Murrey R Spiegal, Laplace Transforms (SCHAUM Outline Series), McGraw Hill, 1965.		
Referen	ce Books:	
1. Hildebrand F. B., "Methods of Applied Mathematics", Courier Dover Publications, 1992.		
E-resour	'ces:	
https://np	tel.ac.in/courses/111106111	

<u>Course-Code: MAT437</u> <u>Course Title: Elementary Number Theory</u>		
Teaching Scheme	Examination Scheme	Credits Allotted
Theory: 3 hours/ week	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3
Tutorial: 1 Hour/Week		Tutorial: 1
		Total: 4
Course Prerequisite: Student should have knowledge of		

1.	basic Concepts of sets		
Course O	bjectives:		
1	To teach the students integers and their properties		
2	To teach the students the congruences		
3	To teach the students the arithmetic functions		
4	To teach the students binary quadratic forms		
Course O	Outcomes: Students will be able to		
1.	learn the concepts of linear Diophantine equation		
2	use the modular arithmetic		
3	learn primitive root theorem		
4	discuss binary quadratic forms		
Course C	Content:		
Unit-I	Division in integers, Greatest common divisor, Euclid's Algorithm, Linear Diophantine equations, Prime numbers, Fundamental Theorem of arithmetic, Distribution of primes, Greatest integer functions	15 Hours	
Unit-II	Congruence relation, Properties of Congruence relation, Linear Congruences, Solvability of Linear congruence, modular arithmetic, Residue classes and reduced residue classes, Fermat's little theorem, Wilson's theorem, Euler's theorem Chinese remainder theorem, Higher degree polynomial congruence, Polynomial congruence mod p^r	15 Hours	
Unit-III	Quadratic residues, Legendre Symbol, Primitive root theorem, Arithmetic functions $\Box(\Box)$, $\Box(\Box)$, $\Box(\Box)$, $\Box(\Box)$, Ring of Arithmetic functions, Multiplicative arithmetic functions, Möbius inversion formula, Perfect numbers	15 Hours	
Unit-IV	Representation of an integer as a sum of two and four squares, Diophantine equations $x^2+y^2=z^2$ and $x^4+y^4=z^4$. Binary quadratic forms and Equivalence of quadratic forms, Farey sequences	15 Hours	
Internal	Assessment:		

CIA*-1	Unit -I,II	
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit-III	
EoSE**	Unit-I,II,III,IV	
	ous Internal Assessment Semester Examination	
Text Bool	κs:	
1. B	urton D. M., 1989, Elementary Number Theory, Wm. C. Brown Publisher	rs, Dubuque, Iowa.
2. Jo	nes G.A. and J.M. Jones, 1998, Elementary Number Theory, Springer-V	erlag, New York
3. Si	erpinski W., 1998, Elementary Theory of Numbers, North-Holland, Irelar	nd.
4. K	oshy T., 2007, Elementary Number Theory with Applications, Academic	Press, New York.
Reference	e Books:	
	. Zuckerman N.S.H., Montgomery L.H., 1991, An Introduction to the Theory of Numbers, John Wiley.	
E-resourc	ees:	
https://a	rchive.nptel.ac.in/courses/	

<u>Course-Code: MAT438</u> <u>Course Title: Introduction to Space Dynamics</u>		
Teaching Scheme	Examination Scheme	Credits Allotted
Theory: 3 hours/ week	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3

Tutorial: 1 Hour/Week		Tutorial: 1		
		Total: 4		
Course Pro	erequisite:			
1.	Basics of linear algebra, analytical geometry, differential equations	, and vector calculus.		
Course Ob	jectives: To develop the concept of			
1.	kinematics of particles, understanding of different orbital path conservation laws.	s and elaboration of		
2.	two body problems and its application in space and visualization of Kepler's laws of planetary motion.			
3.	existence of integrals in three-body problem, applications of stable equilibrium points of the restricted problem of three bodies and importance of the Jacobi integral.			
4.	rocket dynamics, performance measuring parameters and needs mu	rocket dynamics, performance measuring parameters and needs multi-stages rockets.		
Course Ou	tcomes: Students will be able to			
1.	know about the kinematics of particles, understand about different orbital paths of particles and verify the conservation laws.			
2.	solve the two body problem, verify Kepler's laws of planetary motion and visualize the application of two body problems in space.			
3.	verify the existence of integrals in a three-body problem, determine and examine the stability of equilibrium points in the restricted problem of three bodies and know the importance of the Jacobi integral.			
4.	know about rocket dynamics, estimate the performance parameters and understand about the needs of optimized multi-stages rockets.			
Course Co	ntent:			
Unit-I	Some basic definitions, Conservation laws, Newton's laws of motion, Kinematics of particles, Conic-section, Central force motion, Differential equation of orbit and its solution, Geometry of different kinds of orbits.	15 Hours		
Unit-II	Formulation of problem of two-body and equations of motion, relative equation of motion of two body problem, Solution of two body problem and its application. Kepler's law of planetary motion, Kepler's equation and its solution, Uniform rotating frame.	15 Hours		

Unit-III	it-III Introduction of three body problem, Ten known integrals, Stationary solutions of three body problem and applications, Restricted problem of three body, Jacobi integral, prohibited regions of motion, collinear and noncollinear equilibrium points, Stability analysis of equilibrium points, Applications of restricted problem of three body in space.	
Unit-IV	Equation of variable mass, introduction of rocket theory, governing equation of a rocket, Single-stage rocket and its performance, Effect of gravity on the dynamics of a rocket, two-stage rocket and its performance, multi-stage rocket, Optimization of multi-stage rocket.	15 Hours
Internal Ass	essment:	-
CIA*-1	Unit-I	
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva- Voce based on Unit-II and III	
EoSE**	Written Exam. for Unit-I, II, III, & IV	
	s Internal Assessment mester Examination	1
Text Books:		
Comp 2. Murr 3. Rao I 4. Golds Educ 5. Battin	uskey S. W., 1963, <i>Introduction to Celestial Mechanics</i> , Addiso pany. ay C. D., Dermott S.F., 2000, <i>Solar System Dynamics</i> , Cambridge Us K.S., 2009, <i>Classical Mechanics</i> , PHI Learning, Pvt. Ltd. stein H., Poole C.P., Safko J.L., 2019, <i>Classical Mechanics (Third e</i> ation Pvt. Ltd. n, Richard H., 1999, <i>An Introduction to The Mathematics and Metho</i> A Education Series.	niversity Press.
Reference Bo	ooks:	
Press	nson, William T., 1986, Introduction to Space Dynamics, Dover I	
E-resources:		
	<u>c.in/courses/101105029</u> <u>c.in/courses/101104078</u>	

Course-Code: MAT-439 Course Title: FLUID DYNAMICS				
Teaching Sche	me	Examination Scheme	Credits Allotted	
Theory: 3 Hou	ırs/week	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3	
Tutorial: 1 Ho	ur/week		Tutorial: 1	
			Total: 4	
Course Prereq	uisite: Studer	nt should have knowledge of		
1. b	basic concepts	of differential equations.		
2. b	basic concepts	of calculus		
Course Object	ive: This cou	rse aims to learn		
1. b	basics characteristics of fluid, continuum hypothesis, kinematics of fluids.			
2. E	Eulerian and L	agrangian methods for fluid motion.		
3. (Conservation I	aws in different coordinate systems and boundar	ry conditions.	
4. ii	rrotational and	l rotational flows		
5. s	olution proces	ss of simplified examples.		
Course Outcor	nes: Students	will be able to learn		
		s, continuum hypothesis, strain rate tensor, strea unction and vortex lines.	mline, path line, streak	
2. s	tress tensor, s	ymmetry of stress tensor, transformation of stress	3	
3. E	Eulerian and Lagrangian hypothesis and their differences.			
4. c	conservation law and their equations.			
5. n	methods of implementing fluid dynamics laws.			
6	a number of fundamental mathematical ideas and techniques for the solution of related problems.			
Course Conten	nt:			

Unit-I	Physical Properties of fluids. Concept of fluids, continuum hypothesis, density, specific weight, specific volume, kinematics of fluids: Eulerian and Lagrangian methods of description of fluids, equivalence of Eulerian and Lagrangian method, general motion of fluid element, integrability and compatibility conditions,1			
Unit-II	Unit-IIStrain rate tensor, streamline, path line, streak lines, stream function, vortex lines, circulation. Stresses in Fluids: Stress tensor, symmetry of stress tensor, transformation of stress components from one coordinate system to another, principal axes and principal values of stress tensor, conservation of mass,15 Hou			
Unit-III	Conservation of momentum, Navier Stokes equation, conservation of moments of momentum, equation of energy, basic equations in different coordinate systems, boundary conditions.			
Unit-IV	IV Irrotational and Rotational Flows : Bernoulli's equation, Bernoulli's equation for irrotational flows, two dimensional irrotational incompressible flows, Blasius theorem, circle theorem, sources and sinks, sources sinks and doublets in two dimensional flows.			
Internal As	ssessment:			
CIA-I*	Unit-I			
CIA-II	Written Exams/ Quizzes/ Assignment/ Presentations/ Viva-Voce based on Unit-II and III			
EoSE**	Unit-I, II, III, IV			
	us Internal Assessment Semester Examination			
Text Books				
1. Rathy R.	K., 1976, An Introduction to Fluid Dynamics, Oxford and IBH Publishing	Co.		
2. Thomson	L. N. M., 1962, Theoretical Hydrodynamics, Macmillan and Co. Ltd.			
3. Chorlton	F., 1985, Textbook of Fluid Dynamics, CBS Publishers.			
4. Landau L	. D., Lipschitz E.N., 1985, Fluid Mechanics, Pergamon Press.			
Reference	Books:			
1. Emanue	el, G. 2000, Analytical Fluid Dynamics, CRC Press.			
2. Nakayan	na, Y., Boucher, R. F., 2000, Introduction to Fluid Mechanics, Butterworth	-Heinemann		
E-resource	s:			
https://onl	inecourses.nptel.ac.in/noc19_ce28/preview_			

LEVEL-5

Seme	Semester-III (Integrated M.Sc. B.Ed)						
S. No.	Course Code	Course Title	Type of Course (C/E)	L	Т	Р	Credits
1	MAT501	Functional Analysis	CC	3	1	0	4
2	MAT502	Mathematical Modeling	CC	3	1	0	4
3	MAT503	MOOC (list will be provided)	CC	3	0	0	3
4		Elective Paper (Subjective)	DE	3	1	0	4
5		Elective Paper	GE	2	0	0	2
6	EDU501	Learning Assessment	CC	3	0	0	3
7	EDU502	Pedagogy of Science / Social Science	CC	4	0	0	4
	Total			21	3	0	24

Seme	Semester-IV (Integrated M.Sc. B.Ed)						
S. No.	Course Code	Course Title	Type of Course (C/E)	L	Т	Р	Credits
1	MAT582	Seminar	AECC	2	0	0	2
2	MAT505	Classical Mechanics	CC	3	1	0	4
3		Elective Paper	GE	3	1	0	4
4		Elective Paper	GE	3	1	0	4
5	MAT556	MOOC (MOOC list will be provided at the end of the previous semester)	DE	3	0	0	3

6	EDU503	Classroom Organization and Management	CC	4	0	0	4
7	EDU504	Pedagogy of Mathematics / Physics / Chemistry / Economics	СС	3	0	0	3
	Total			21	3	0	24

<u>Course-Code: MAT501</u> <u>Course Title: Functional Analysis</u>				
Teaching Scheme Examination Scheme Credits Alle			Credits Allotted	
Theory: 3 hou	urs/ week	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3	
Tutorial: 1 Ho	our/Week		Tutorial: 1	
			Total: 4	
Course Prer	equisite:	1	I	
1.	Basics of line	ear algebra, metric space and real analysis.		
Course Obje	ctives: To deve	lop the concept of		
1.	the normed lin	near space and its completeness property.		
2.	elaboration o	rmation and operator in normed linear space of open mapping theorem, closed graph to nn Banach theorem, and natural Embedding	theorem, uniform boundedness	
3.	—	s and its different properties, orthogonality sel's inequality and Riesz's theorem.	y and elaboration of Projection	
4.	4. different operators in a Hilbert space and elaboration of spectral theorem on a finite dimensional Hilbert space.			
Course Outcomes: Students will be able to				
1.	verify the conditions of normed linear space and test the completeness property			
2.	verify the different properties of linear transformation and operators and understand the open mapping theorem, closed graph theorem, uniform boundedness principle, Hahn			

	Banach theorem, and natural Embedding of normed linear spaces.		
3.	recognize the different properties of Hilbert space and orthogonal sets and understand the Projection theorem, Bessel's inequality and Riesz's theorem.		
4.	learn about different operators and understand the spectral dimensional Hilbert space.	theorem on a finit	
Course Co	ntent:		
Unit-I	Normed linear spaces, Examples and properties, Equivalent norms, Convexity and completeness, Banach spaces, Examples and properties, 1 ^p spaces, L ^p spaces, Function space, Quotient Space	15 Hours	
Unit-II	Operators on normed linear space, Continuous linear transformations, Bounded linear transformations, The open mapping Theorem, The closed graph theorem, The conjugate of an operator, The uniform boundedness principle, Hahn Banach Theorem, Embedding of normed spaces.	15 Hours	
Unit-III	Inner product spaces, Examples and properties, Hilbert spaces, Examples and properties, Polarization identity, Orthogonality, Orthogonal complements, Orthogonal Projection on Hilbert spaces, Projection theorem, Bessel's inequality, Riesz's theorem, Existence of orthogonal basis in Hilbert spaces.	15 Hours	
Unit-IV	The adjoint of an operator, Self adjoint operators, Normal and unitary operators, projections, Eigenvalues and eigenvectors of an operator on a Hilbert space, The spectral theorem on a finite dimensional Hilbert space.	15 Hours	
Internal A	ssessment:		
CIA*-1	Unit-I		
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva- Voce based on Unit-II and III		
EoSE**	Written Exam. for Unit-I, II, III, & IV		
	bus Internal Assessment Semester Examination		
Text Books	5:		
1. Bao 2. Tay	 S: chman G. and Narici, 1964, <i>Functional Analysis</i>, Academic Press. ylor A. E., 1958, <i>Introduction to Functional Analysis</i>, John Wiley and S. Nair, <i>Functional Analysis: A first Course</i>, Prentice Hall of Ind 		

(Second Printing: 2008)

Reference Books:

- 1. Simmons G. F., 1963, Topology and Modern Analysis, McGraw Hill.
- 2. Erwin Kreyszig E., 1978, Introductory Functional Analysis with Application, Wiley

E-resources:

https://nptel.ac.in/courses/111106047 https://nptel.ac.in/courses/111106147

<u>Course-Code: MAT 502</u> <u>Course Title: Mathematical Modeling</u>			
Teaching	Scheme	Examination Scheme	Credits Allotted
Theory: 3 week	hours/	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3
Tutorial: 1 Hour/Wee			Tutorial: 1
			Total: 4
Course P	rerequisite	Student should have knowledge of	•
1.	basic conc	epts in Linear Algebra and Real Analysis and Di	ifferential Equations
Course O	bjectives:		
1.	To introdu	ace students to the elements of the mathematical	modeling process
2.	To learn d	ifferent types of mathematical models and their n	nature.
3.	To exemp	lify the value of mathematics in problem solving	
4.	to develop students' capacity to solve problems through the use of mathematical models as a transferable process that will equip them to address novel problems in future.		
5.	5. To develop some of the methods used to explore qualitative information about the behaviour of solutions of differential equations		
Course Outcomes: Students will be able to learn			

1.	the unique system characterization approach for a given system				
2.	identify assumptions which are consistent with the context of the problem and which in turn shape and define the mathematical characterization of the problem				
3.	how to analyze a given model system using mathematical a	nalysis results.			
4.	revise and improve mathematical models so that they wi information and/or will support more realistic assumptions	ll better correspond to empirical			
5.	different types of mathematical models in ecology, epider Sciences, Engineering etc.	niology, chemistry, Physics, Life			
Course C	ontent:				
Unit-I	Introduction to modeling. Definition of System, classification of systems, classification and limitations of mathematical models, Methodology of model building, modeling through ordinary differential equations:	15 Hours			
Unit-II	Linear growth and decay models, non-linear growth and decay models, Compartment models, Checking model validity, verification of models, Stability analysis, Basic model relevant to population dynamics, Epidemics modeling.	15 Hours			
Unit-III	Ecology, Environment Biology through ordinary differential equation, Partial differential equation, Basic theory of linear difference equations with constant coefficients	15 Hours			
Unit-IV	Mathematical modeling through difference equations in population dynamics, genetics, Markov chains model, Gambler's ruin model, Stochastic models, Monte Carlo methods.	15 Hours			
Internal A	Assessment:				
CIA*-1	Unit -I				
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit-II and III				
EoSE**	Unit-I, II, III, IV				
*: Continuous Internal Assessment **: End of Semester Examination					
Text Bool	Text Books:				

- 1. Murthy D. N. P., Page N. W., Rodin E. Y., 1990, *Mathematical Modelling: A Tool for Problem Solving in Engineering, Physics, Biological and Social Sciences*, Pergamon Press
- 2. Kapur J. N., 2008, Mathematical Modelling, New Age Int. Pub
- 3. Law A. M., Kelton W. D., 1991, Simulation Modeling and Analysis, McGraw-Hill.
- 4. Meerscheart M.M., 2007, *Mathematical Modeling*, Academic Press

Reference Books:

1. Nemytskii V.V., 2005, A Course in Mathematical Modeling, Mathematical Association of America

E-resources:

https://nptel.ac.in/courses/111108081

Course Code: MAT503

Course Title: MOOC (list will be provided at the beginning of the semester)

<u>Course-Code: MAT505</u> <u>Course Title: Classical Mechanics</u>				
Teaching Scheme	Examination Scheme	Credits Allotted		
Theory: 3 hours/ week	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3		
Tutorial: 1 Hour/Week		Tutorial: 1		
		Total: 4		
Course Prerequisite:				

1.	Basics of linear algebra, differential equations, and vector calculus.			
Course Ob	ojective: To develop the concept of			
1.	kinematics of particles, frame of references and relative changes and moment of inertia.	in equation of motion		
2.	of expressing kinetic energy and angular momentum about a moment of inertia and in terms of Eulerian angle along with applic			
3.	of generalized coordinates and degree of freedom and understa between Lagrangian dynamics and Hamiltonian dynamics.	anding the differences		
4.	Hamilton's principle and its uses, applications of canonical trans uses of Lagrange and Poisson brackets.	sformations along with		
Course Ou	itcomes: Students will be able to			
1.	1. know about the kinematics of particles, describe the relative changes in the equation of motion in different frames, and calculate moment of inertia of a given mass about a line.			
2.	express kinetic energy and angular momentum of a mass about a fixed axis in terms of moment of inertia and in terms of Eulerian angle and use these expressions to describe the motion of Earth.			
3.	recognize the degree of freedom of a mass in motion and formula body using Lagrangian function and Hamiltonian function.	te the motion of a rigid		
4.	use the Hamilton's principle, apply the canonical transformate Lagrange and Poisson brackets.	ions and compute the		
Course Co	ontent:			
Unit-I	Introduction of conservation laws, equation of motion of a particle, Simple pendulum, Harmonic oscillator, Motion of system of particles, Principle of angular momentum, Motion of a rigid body about a fixed axis, Moving frames of reference, Moments and products of inertia, moment of inertia of a body about a line through the origin, Momental ellipsoid, rotation of coordinate axes, principal axes and principal moments.	15 Hours		
Unit-II	K.E. of rigid body rotating about a fixed point, angular momentum of a rigid body, Eulerian angle, angular velocity, K.E. and angular momentum in terms of Eulerian angle. Euler's equations of motion for a rigid body rotating about a fixed point, torque free motion, symmetrical rigid body, rotational motion of Earth. Attitudinal stability of Earth's satellite.	15 Hours		

Unit-IV Hamiltonian principle for a conservative system, principle of least action, Hamilton- Jacobi equation, Phase space and Liouville's Theorem, Canonical transformation and its properties, Lagrange brackets, and Poisson brackets, Poisson-Jacobi identity. 15 Hours Internal Assessment: Internal Assessment: 1 CIA*-1 Unit-I Init-I CIA-II Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit-II and III 1 EoSE** Written Exam. for Unit-I, II, III, & IV *: Continuous Internal Assessment **: Continuous Internal Assessment **: End of Semester Examination Text Books: 1. Milne E. A., 1965, Vectorial Mechanics, Methuen & Co. Ltd. London. 2. Kumar N., 2004, Generalized Motion of Rigid Body, Narosa Pub. House, New Delhi. 3. Rao K. S., 2009, Classical Mechanics, PHI learning Private Ltd., New Delhi. 3. Rao K. S., 2017, Dynamics (Part II), (2nd Ed.), CBS Publishers & Distributors, Delhi. 2. Goldstein H., 1990, Classical Mechanics, Narosa Publishing House, New Delhi. E-resources: https://www.classcentral.com/course/rigid-body-dynamics-20108	Unit-III	Classification of dynamical systems, Generalized coordinates systems, geometrical equations, Lagrange's equation for a simple system using D'Alembert principle, Deduction of equation of energy, deduction of Euler's dynamical equations from Lagrange's equations, Hamilton's equations, Ignorable coordinates, Routhian Function.	15 Hours		
CIA*-1 Unit-I CIA*-1 Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit-II and III EoSE** Written Exam. for Unit-I, II, III, & IV *: Continuous Internal Assessment **: End of Semester Examination Text Books: 1. Milne E. A., 1965, Vectorial Mechanics, Methuen & Co. Ltd. London. 2. Kumar N., 2004, Generalized Motion of Rigid Body, Narosa Pub. House, New Delhi. 3. Rao K. S., 2009, Classical Mechanics, PHI learning Private Ltd., New Delhi. 1. Ramsey A. S., 2017, Dynamics (Part II), (2nd Ed.), CBS Publishers & Distributors, Delhi. 2. Goldstein H., 1990, Classical Mechanics, Narosa Publishing House, New Delhi.	Unit-IV	least action, Hamilton- Jacobi equation, Phase space and Liouville's Theorem, Canonical transformation and its properties, Lagrange brackets, and Poisson brackets, Poisson-	15 Hours		
CIA-II Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit-II and III EoSE** Written Exam. for Unit-I, II, III, & IV *: Continuous Internal Assessment **: Continuous Internal Assessment **: End of Semester Examination Image: Control of Semester Examination Text Books: Image: Control of Rigid Body, Narosa Pub. House, New Delhi. 1. Milne E. A., 1965, Vectorial Mechanics, Methuen & Co. Ltd. London. 2. Kumar N., 2004, Generalized Motion of Rigid Body, Narosa Pub. House, New Delhi. 3. Rao K. S., 2009, Classical Mechanics, PHI learning Private Ltd., New Delhi. 2. Reference Books: 1. Ramsey A. S., 2017, Dynamics (Part II), (2nd Ed.), CBS Publishers & Distributors, Delhi. 2. Goldstein H., 1990, Classical Mechanics, Narosa Publishing House, New Delhi.	Internal Ass	essment:	•		
Voce based on Unit-II and III EoSE** Written Exam. for Unit-I, II, III, & IV *: Continuous Internal Assessment *: Continuous Internal Assessment **: End of Semester Examination Text Books: 1. Milne E. A., 1965, Vectorial Mechanics, Methuen & Co. Ltd. London. 2. Kumar N., 2004, Generalized Motion of Rigid Body, Narosa Pub. House, New Delhi. 3. Rao K. S., 2009, Classical Mechanics, PHI learning Private Ltd., New Delhi. 1. Ramsey A. S., 2017, Dynamics (Part II), (2nd Ed.), CBS Publishers & Distributors, Delhi. 2. Goldstein H., 1990, Classical Mechanics, Narosa Publishing House, New Delhi.	CIA*-1	Unit-I			
 *: Continuous Internal Assessment **: End of Semester Examination Text Books: Milne E. A., 1965, <i>Vectorial Mechanics</i>, Methuen & Co. Ltd. London. Kumar N., 2004, <i>Generalized Motion of Rigid Body</i>, Narosa Pub. House, New Delhi. Rao K. S., 2009, <i>Classical Mechanics</i>, PHI learning Private Ltd., New Delhi. Reference Books: Ramsey A. S., 2017, <i>Dynamics (Part II), (2nd Ed.)</i>, CBS Publishers & Distributors, Delhi. Goldstein H., 1990, <i>Classical Mechanics</i>, Narosa Publishing House, New Delhi. 	CIA-II				
 : End of Semester Examination Text Books: Milne E. A., 1965, Vectorial Mechanics, Methuen & Co. Ltd. London. Kumar N., 2004, Generalized Motion of Rigid Body, Narosa Pub. House, New Delhi. Rao K. S., 2009, Classical Mechanics, PHI learning Private Ltd., New Delhi. Reference Books: Ramsey A. S., 2017, Dynamics (Part II), (2nd Ed.), CBS Publishers & Distributors, Delhi. Goldstein H., 1990, Classical Mechanics, Narosa Publishing House, New Delhi. 	EoSE	Written Exam. for Unit-I, II, III, & IV			
 2. Kumar N., 2004, <i>Generalized Motion of Rigid Body</i>, Narosa Pub. House, New Delhi. 3. Rao K. S., 2009, <i>Classical Mechanics</i>, PHI learning Private Ltd., New Delhi. Reference Books: Ramsey A. S., 2017, <i>Dynamics (Part II), (2nd Ed.)</i>, CBS Publishers & Distributors, Delhi. Goldstein H., 1990, <i>Classical Mechanics</i>, Narosa Publishing House, New Delhi. E-resources: 	**: End of Se		·		
 Ramsey A. S., 2017, <i>Dynamics (Part II), (2nd Ed.)</i>, CBS Publishers & Distributors, Delhi. Goldstein H., 1990, <i>Classical Mechanics</i>, Narosa Publishing House, New Delhi. E-resources:	2. Kum 3. Rao	ar N., 2004, <i>Generalized Motion of Rigid Body</i> , Narosa Pub. House, K. S., 2009, <i>Classical Mechanics</i> , PHI learning Private Ltd., New D			
 Goldstein H., 1990, <i>Classical Mechanics</i>, Narosa Publishing House, New Delhi. E-resources: 					
	• • • • • • • • • • • • • • • • • • • •				
https://www.classcentral.com/course/rigid-body-dynamics-20108	E-resources:	:			
	https://www.classcentral.com/course/rigid-body-dynamics-20108				

LEVEL-5 (Electives and Self Study)				
S. No.	Course Code	Precise Course Title	Credit	Remarks
1	MAT531	Partial Differential Equations	4	
2	MAT532	GAME THEORY	4	
3	MAT533	GRAPH THEORY	4	
4	MAT534	AUTOMATA THEORY AND FORMAL LANGUAGES	4	
5	MAT535	FOUNDATIONS OF SET THEORY	4	
6	MAT536	PROGRAMMING IN C	4	
7	MAT 537	ALGEBRAIC NUMBER THEORY	4	
8	MAT 538	ALGEBRAIC TOPOLOGY	4	
9	MAT 539	AN INTRODUCTION TO FUZZY SET THEORY AND FUZZY LOGIC	4	
10	MAT 540	CELESTIAL MECHANICS	4	
11	MAT 541	COMPUTATIONAL ODE	4	
12	MAT 542	COMPUTATIONAL PDE	4	
13	MAT 543	DIFFERENTIAL GEOMETRY	4	
14	MAT 544	DIFFERENTIAL EQUATIONS & DYNAMICAL SYSTEMS	4	
15	MAT 545	FINANCIAL MATHEMATICS	4	
16	MAT 546	Advanced Complex Analysis	4	
17	MAT 547	FUNCTIONS OF SEVERAL REAL VARIABLES	4	
18	MAT 548	LIE ALGEBRAS	4	
19	MAT 549	MODULE THEORY	4	

20	MAT 550	NONLINEAR DYNAMICS & CHAOS	4	
21	MAT 551	FIELDS AND GALOIS THEORY	4	
22	MAT 552	OPERATIONS RESEARCH	4	
23	MAT 553	REPRESENTATION THEORY OF FINITE GROUPS	4	
24	MAT 554	SPECIAL FUNCTIONS	4	
25	MAT 555	Mathematics for Machine Learning	4	

Course Code: MAT556 Course Title: MOOC (list will be provided at the beginning of the semester)

	<u>Course-Code: MAT531</u> <u>Course Title: Partial Differential Equations</u>			
Teaching	Scheme	Examination Scheme	Credits Allotted	
Theory: 3	hours/ week	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3	
Tutorial: 1	Hour/Week		Tutorial: 1	
			Total: 4	
Course P	rerequisite: Stude	nt should have knowledge of		
1.	solution methods	of ODE		
2.	differential calcul	differential calculus		
Course O	Course Objectives: To teach			
1	theory of partial differential equations and solution methods.			
2	the nature of PDEs like parabolic, elliptic, hyperbolic.			

3	Green's Function method to find the solution of Non-homogeneous PDE			
4	Variational formulation of boundary value problems.			
Course O	utcomes: Students will be able to			
1.	solve the PDEs independently			
2	convert partial differential equations to canonical form.			
3	use Green's function method to solve non-homogeneous PDE			
4	apply to Variational formulation of boundary value problems			
Course C	ontent:			
Unit-I	Formation of PDEs: First order PDE in two and more independent variables, Derivation of PDE by elimination method of arbitrary constants and arbitrary functions. Lagrange's first order linear PDEs, Charpit's method for non-linear PDE of first order, Jacobi's method and Cauchy problem for first order PDEs.	15 Hours		
Unit-II	PDEs of second order with variable coefficients: Classification of second order PDEs, Canonical forms of Parabolic, Elliptic and Hyperbolic PDEs, Method of separation of variables for Laplace, Heat and Wave equations.	15 Hours		
Unit-III	Eigenvalues and Eigenfunctions of BVP, Orthogonality of Eigen function, D-Almbert's solutions to wave equations, Fundamental solution of Laplace Equation, Green's function for Laplace Equation, Wave equation, Diffusion Equation, Solution of BVP in spherical and cylindrical coordinates.	15 Hours		
Unit-IV	General solution of higher order PDEs,, Variational formulation of boundary value problem.	15 Hours		
Internal Assessment:				
CIA*-1	Unit -I			
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit-II and III			
EoSE**	Unit-I,II,III,IV			
	ous Internal Assessment f Semester Examination			

Text Books:

1. Rao, S.K., Introduction to Partial Differential Equations, Phi Learning.

2. Sneddon, I.N., *Elements of Partial Differential Equations*, Dover Publications.

3. Birkhoff, G., Rota, G.C., Ordinary Differential Equations, Wiley.

Reference Books:

1. Amaranath, T., An Elementary Course in Partial Differential Equations, Narosa Publication.

E-resources:

1. https://archive.nptel.ac.in/courses/111/105/111105093

<u>Course-Code: MAT532</u> <u>Course Title: Game Theory</u>				
Teaching	g Scheme	Examination Scheme	Credits Allotted	
Theory: 3 week	3 hours/	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3	
Tutorial: Hour/We			Tutorial: 1	
			Total: 4	
Course P	Prerequisit	e: Students should have		
1.	knowledg	e of linear programming and simplex methods.		
Course (Course Objectives:			
1.	To provide a rigorous treatment of solution concepts for games with perfect and imperfect information including Nash and subgame perfect Nash equilibria.			

2.	To cover topics such as auction, VNM utility function, barga	ining game, etc.	
3.	To provide detailed knowledge about cooperative games.		
4.	To teach about games with imperfect information.		
Course C	Dutcomes: Students will be able to		
1.	model competitive real world phenomena using concepts f optimal strategy and equilibrium solutions for such models.	rom game theory and identify	
2.	learn the two person zero-sum game and its equilibrium soluti	on.	
3.	discuss dynamic games and cooperative games.		
4.	work on strategic and dynamic games with imperfect information	tion.	
Course C	Content:		
Unit-I	A General Introduction to Game Theory-its Origin, Representation of Games, Type of Game, Games with Perfect Information-Strategic Form Game, Solution Concept- Pure and Mixed Strategies, Dominance and Best Response, Pareto Optimality, Maxmin and Minmax Strategies,	15 Hours	
Unit-II	Pure and Mixed Strategies Nash Equilibrium, Existence of a Nash Equilibrium, Two-person Zero-Sum Games-its Solution, Market Equilibrium and Pricing: Cournot and Bertrand Game, Auctions.	15 Hours	
Unit-III	Decision Making and Utility Theory, Von Neumann and Morgenstern Utility Function, Theory of Risk Aversion, Equilibrium Theory. Dynamic Games of Perfect Information-Extensive Form Game, Subgame Perfect Nash Equilibrium, Backward Induction, Stackelberg Model of Duopoly. Coalition Games, Core and Shapley Value, Bargaining Game, Illustrations.	15 Hours	
Unit-IV	Strategic Games with Imperfect Information -Bayesian Games, Cournot's Duopoly with Imperfect Information. Dynamic Games with Imperfect Information. Finitely and Infinitely Repeated Games, The Folk Theorem, Illustrations.	15 Hours	
Internal	Assessment:		

CIA*-1	Unit -I		
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit-II and III		
EoSE**	Unit-I,II,III,IV		
	nuous Internal Assessment of Semester Examination		
Text Bo	oks:		
2. 3.			

4. Von Neumann J. and Morgenstern O., 1944, *Theory* New York: John Wiley and Sons.

Reference Books:

1. Watson J., 2013, *Strategy: An Introduction to Game Theory* (3rd Ed.), W.W. Norton & Company, London.

E-resources:

1. https://archive.nptel.ac.in/courses/110/104/110104063/

	<u>Course-Code: MAT533</u> <u>Course Title: Graph Theory</u>			
Teaching	Scheme	Examination Scheme	Credits Allotted	
Theory: 3	hours/ week	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3	
Tutorial: 1	l Hour/Week		Tutorial: 1	
			Total: 4	
Course Prerequisite: Student should have knowledge of				
1.	basic Concepts	of sets		

Course Objectives:				
1	To teach the students basics of graphs			
2	To teach the students the connectivity			
3	To teach the students the planar graph			
4	To teach the students incidence matrix			
Course O	utcomes: Students will be able to learn			
1.	the concepts of operation on graphs			
2	the Eulerian graphs			
3	the Kuratowski's theorem			
4	the automorphism of graphs			
Course C	ontent:			
Unit-I	Graphs, Isomorphism of graphs, subgraph, walk, connectedness, degree, bipartite graph, Intersection graph, Operations on graphs, graph products, cut point, bridges, blocks	15 Hours		
Unit-II	Tree, Center, Centroid, Connectivity, Line connectivity, Partition, Graphical partition, Eulerian graphs, Hamiltonian graphs, Line graph, Characterization of line graph	15 Hours		
Unit-III	Covering, Independence, Planar graphs, Kuratowski's theorem, Chromatic Number, Chromatic polynomial	15 Hours		
Unit-IV	Adjacency matrix, Incidence matrix, automorphism groups of graphs, group of composite graph	15 Hours		
Internal Assessment:				
CIA*-1	Unit -I			
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit-II and III			
EoSE**	Unit-I,II,III,IV			

*: Continuous Internal Assessment **: End of Semester Examination

Text Books:

- 1. Harary F., 1969, Graph Theory, Narosa Publication House, New Delhi
- 2. Balakrishnan, R., Ranganathan K., 2012, A Textbook of Graph Theory, Springer, New York
- 3. Deo N., 1974, *Graph Theory with Applications to Engineering and Computer Science*, Prentice-Hall of India, New Delhi

Reference Books:

1. Diestel R., 2000, *Graph Theory*, Springer, New York

E-resources:

https://archive.nptel.ac.in/courses/

	<u>Course Code: MAT534</u> <u>Course Title: AUTOMATA THEORY AND FORMAL LANGUAGES</u>			
Teaching	Scheme	Examination Scheme	Credits Allotted	
Theory: 3	hours/ week	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3	
Tutorial: 1	l Hour/Week		Tutorial: 1	
			Total: 4	
Course P	rerequisite: Studer	nt should have knowledge of		
1.	1. basic concepts of sets, relations, functions			
2.	2. basic concepts of propositional logics			
Course O	Course Objectives:			

1	To explain why the study of automata is an important part of the core of computer science.		
2	To explain how finite automata are useful models in science and technology.		
3	To develop understanding of the concepts of automata theory and formation	al languages.	
Course O	utcomes: Students will be able to learn		
1.	how automata and formal languages impact our life.		
2	the concepts and topics in hand without haste;		
3	the significance of the concepts defined and the theorems proved here;		
4	the concepts in more generalized form to capture uncertainty and vagues systems.	ness of complex	
Course C	ontent:		
Unit-I	Theory of Computation: Finite automata, Deterministic and non- deterministic finite automata, equivalence of deterministic and non- deterministic automata, Moore and Mealy machines, Minimization of Automata, Regular expressions.	15 Hours	
Unit-II	Conversion of finite automata to Regular expression. Grammars and Languages, Derivations, Language generated by a grammar, Regular language and regular grammar, Context free grammar and context-free language.	15 Hours	
Unit-III	Context sensitive grammars and Languages. Context-free grammar in Chomsky normal form, Regular expressions, Formal definition of regular expression, Equivalence of regular expression and finite automata, Kleene's theorem.		
Unit-IV	Formal definition of a Turing Machine, Representation of a Turing Machine , Turing machines as language acceptors, Universal Turing machines, decidability, undecidability, Turing Machine halting problem, Rice Theorem.	15 Hours	
Internal A	Assessment:		
CIA*-1	Unit -I		
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit-II and III		

EoSE**	Unit-I,II,III,IV			
	*: Continuous Internal Assessment **: End of Semester Examination			

Text Books:

- 1. Kelly D., 1995, Automata and Formal Languages: An Introduction, Prentice-Hall.
- 2. Hopcroft J. E., Motwani R. and Ullman J. D., 2001, *Introduction to Automata, Languages, and Computation (2nd Ed.)*, Pearson Edition.
- 3. Linz P., 2010, An Introduction to Formal Languages and Automata, Narosa.

Reference Books:

1. Sipser M., 2012, Introduction to the Theory of Computation (3rd Ed.), Cengage Learning.

E-resources:

- 1. https://archive.nptel.ac.in/courses/111/103/111103016/
- 2. https://nptel.ac.in/courses/106105196

<u>Course-Code: MAT535</u> Course Title: FOUNDATIONS OF SET THEORY				
Teaching	Scheme	Examination Scheme	Credits Allotted	
Theory: 3	hours/ week	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3	
Tutorial: 1	l Hour/Week		Tutorial: 1	
			Total: 4	
Course P	Course Prerequisite: Student should have knowledge of			
1.	1. basic Concepts of sets			
Course Objectives:				

1	To teach the students the mathematical statements		
2	To teach the students the relation and map		
3	To teach the students the construction of number systems		
4	To teach the students ordinal numbers		
Course O	utcomes: Students will be able to learn		
1.	the Zermelo-Fraenkel axioms of set theory		
2	the Peano's axioms		
3	the dedekind cut approach		
4	the cardinal arithmetic		
Course C	ontent:		
Unit-I	Mathematical statements, connectives, simple sentence and compound sentence, universal quantifiers, Functional Rule and Truth Table, Conjunction, Disjunction, Implication, Tautology and Contradiction, Rules of Inference and Replacement, method of contradiction, Zermelo-Fraenkel axioms of set theory, Class of sets, Russel's Paradox	15 Hours	
Unit-II	Successor set and natural numbers, Ordered pair, Cartesian product, Relations and Maps on sets, Indexing set, Arbitrary intersection and union, Extension of Maps, Fundamental Theorem of Maps, Number Systems, Natural Numbers, Peano's Axioms, Pigeonhole Principle,	15 Hours	
Unit-III	Construction of other number systems, Integers and Rational Numbers, Their arithmetic and ordering, Dedekind cut, Real number system as complete ordered field	15 Hours	
Unit-IV	∈-transitive sets, Ordinals, class of ordinals, Trichotomy law between ordinals, characterization of an ordinal in terms of ∈- transitive sets, successor and limit ordinals, Principle of Transfinite Induction, Ordinal Arithmetic, Ordinals and well ordered set, Axiom of Choice and its equivalence, The Banach- Tarski Paradox, Cardinals and its arithmetic, ordering of cardinals, countable and uncountable sets, continuum hypothesis	15 Hours	

Internal Assessment:				
CIA*-1	Unit -I,II			
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit-III			
EoSE**	Unit-I,II,III,IV			
	ous Internal Assessment Semester Examination			
Text Bool	κς:			
1. Le	1. Levy A., 1979, <i>Basic Set Theory</i> , Springer-Verlag, New York.			
2. Copi M., 1979, Symbolic Logic, Macmillan Publishing Co. Inc., New York.				
 Kakkar V., 2016, Set Theory: Read it, Absorb it and Forget it, Narosa Publication House, New Delhi. 				
4. Enderton H. B., 1977, Elements of Set Theory, Academic Press Inc., New York.				
Reference Books:				
1. H	1. Halmos P. R., 1960, <i>Naive Set Theory</i> , Von Nostrand Reinhold Company, New York.			
E-resourc	E-resources:			
https://a	archive.nptel.ac.in/courses/			

<u>Course-Code: MAT-536</u> <u>Course Title: PROGRAMMING IN C</u>		
Teaching Scheme	Examination Scheme	Credits Allotted
Theory: 3 Hours/week	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3

Г

Lab: 2 Hou	ır/week		Lab: 1
			Total: 4
Course Prer	equisite: Students sho	uld have knowledge of	
1.	basics of set and fu	nctions	
Course Obje	ectives: This course ain	ns to learn	
1.	To introduce the basi	ic concepts of computer programming languag	ges.
2.	To develop the logic	s for create programs.	
3.	To introduce basic pa	rogramming constructs	
Course Outo	comes: Students will b	e able to learn	
1.	the concepts of comp	puter programming languages	_
2.	the codes the program	nmes in C language	
3.	the developing of the	applications	
Course Co	ntent:		
Unit-I	domains, language Describing Syntax syntax, recursive	of programming languages: Programming evaluation criterion and language categories and Semantics, formal methods of describing descent parsing, Dynamic semantic antics, denotational semantics, axiomatic	s, 11 Hours g Theory + 7
Unit-II	data types, array typointer types, arith	Binding, Type checking, Scope and lifetime ypes, record types, union types, set types and metic expressions, type conversions, relationa essions, assignment statements, mixed mode	d 11 Hours al Theory + 8
Unit-III	selection stateme branching, Charac Instructions, assig	control structures, compound statements ents, iterative statements, unconditiona ter set, variables and constants, keywords gnment statements, arithmetic expression ts, simple input and output.	$\begin{array}{c c} 11 \text{ Hours} \\ \hline s, & Theory + 7 \end{array}$
Unit-IV	decision control s structure, functio	ors, logical operators, control structures tructure, loop control structure, case contro ns, subroutines, scope and lifetime o ter passing mechanism, arrays and strings.	Theory $+ 8$
Internal A	ssessment:		
CIA-I*	Unit-I		

CIA-II	Written Exams/ Quizzes/ Assignment/ Presentations/ Viva-Voce/ based on Unit-II and III			
EoSE**	Unit-I, II, III, IV			
	us Internal Assessment emester Examination			
Text Books:				
1. Sebesta R. Asia.	W., 1999, Concepts of Programming Language, Addison Wesley, Per	arson Education		
2. Deitel P., D	Deitel H., 2010, How to Program C (6th Ed.), Addison Wesley, Pearson	Education Asia.		
3. Toledo R. International I	A. M., Cushman P. K., 2003, Introduction to Computer Science, Edition.	Mc Graw Hill		
4. Appleby D.	, Kopple, J.J.V., 1997, Programming Languages (2nd Ed.), Tata McGra	w Hill, India.		
5. King K. N.,	2008, C Programming a Modern Approach (2nd Ed.), W. W. Norton &	c Company.		
Reference Bo	Reference Books:			
1. Kanetkar Y., 2018, Let Us C (16th Ed.), B.P.B Publications.				
E-resources:				
20to,Aftern	necourses.nptel.ac.in/noc22_cs40/preview#:~:text=The%20course% oon%20Session%202pm%20to%205pm.&text=This%20course%2			

%20an,section%20for%20date%20and%20time

Course-Code: MAT537 Course Title: ALGEBRAIC NUMBER THEORY			
Teaching	Scheme	Examination Scheme	Credits Allotted
Theory: 3	hours/ week	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3
Tutorial: 1 Hour/Week			Tutorial: 1
			Total: 4
Course Prerequisite: Students should have knowledge of			
1.	1. basic Concepts of ring and elementary number theory		

Course Objectives:					
1	To teach the students properties of number fields				
2	To teach the students the quadratic fields				
3	To teach the students the class group				
Course O	utcomes: Students will be able to learn				
1.	the arithmetic of algebraic number fields				
2	Minkowski's theorem				
3	Dirichlet unit theorem				
4	the diophantine equation				
Course Co	ontent:				
Unit-I	Number fields, the ring of algebraic integers, calculation for quadratic, cubic and cyclotomic cases, norms and traces, integral bases and discriminants,	15 Hours			
Unit-II	Dedekind domains, unique factorization of ideals, norm of ideals, factorization of prime ideals in extensions, The ideal class group, lattices in Rn, Minkowski's theorem,	15 Hours			
Unit-III	Finiteness of the class number and its consequences, some class number computations, Dirichlet unit theorem, units in real quadratic fields	15 Hours			
Unit-IV	Some Diophantine equations, Cubic residue symbol, Jacobi sums, Cubic reciprocity law, biquadratic reciprocity law and Eisenstein reciprocity law	15 Hours			
Internal A	Internal Assessment:				
CIA*-1	Unit -I,II				
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit-III				
EoSE**	Unit-I,II,III,IV				
	ous Internal Assessment Semester Examination				

Text Books:

- 1. Esmonde J., Murty M. R., 1999, Problems in Algebraic Number Theory, GTM, Springer-Verlag.
- 2. Mollin R.A., 2001, Algebraic Number Theory, CRC Press.
- 3. Alaca S., Williams K. S., 2004, *Introductory Algebraic Number theory*, Cambridge University Press.
- 4. Zuckerman N.S.H., Montgomery L.H., 1991, An Introduction to the Theory of Numbers, John Wiley.

Reference Books:

1. Marcus D. A., 1977, Number Fields, Springer-Verlag.

E-resources:

https://archive.nptel.ac.in/courses/

Course-Code: MAT538 Course Title: ALGEBRAIC TOPOLOGY					
Teaching	g Scheme	Examination Scheme	Credits Allotted		
Theory: 3	3 hours/ week	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3		
Tutorial:	1 Hour/Week		Tutorial: 1		
			Total: 4		
Course I	Course Prerequisite: Students should have knowledge of				
1.	concepts of general topology				
Course Objectives:					
1	To teach the students one point compactification				

2	To teach the students the fundamental groups			
3	To teach the students the lifting problems and its uniqueness			
4	To teach the students Van Kampen Theorem			
Course O	utcomes: Students will be able to learn			
1.	the concepts of pushout and adjunct spaces			
2	the calculation of some fundamental groups			
3	the Deck transformation			
4	the homology groups			
Course C	ontent:			
Unit-I	Review of General Topology, Continuous maps, compactness, one point compactification, Locally compact spaces, Proper maps, Quotient space, Real Projective space, Mobius band, Klein's bottle, torus, Wedge product, Co-product of groups, pushout, adjunct spaces, Cone.	15 Hours		
Unit-II	Path, Homotopy, Reparametrization, First fundamental groups, Simply connected spaces, Category and functors between categories, Category of pointed topological space, Functorial property of fundamental group, Retraction map, Brower's fixed point theorem, fundamental group of product spaces.	15 Hours		
Unit-III	Deformation Retract, Covering projections, the lifting problems and its uniqueness, lifting of path and homotopy, Action of fundamental groups on fibers, regular covering, Deck transformation, group of Deck transformations, its action on fibres.	15 Hours		
Unit-IV	Van Kampen Theorem, fundamental group of some adjunct spaces, n- simplex, face maps, chain, boundary operator, Chain complexes, homology groups, Convex sets and barycentric coordinates, Homotopy invariance of homology, Mayer Vitory sequence and its applications, Maps on sphere and degree.	15 Hours		
Internal A	Internal Assessment:			
CIA*-1	Unit -I, II			
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit-III			

EoSE**	Unit-I,II,III,IV				
2002					
	*: Continuous Internal Assessment **: End of Semester Examination				
Text Bo	oks:				
1.	Munkres J. R., 2000, <i>Topology</i> , Prentice-Hall of India.				
	Greenberg M. J., Harper J. R., 1997, <i>Algebraic Topology</i> : A First Cour Publishing company.	rse, Addison-Wesley			
3.	Deo S., 2006, Algebraic Topology: A Primer, Hindustan Book Agency.				
4.	Vick J. W., 1994, Homology Theory, An Introduction to Algebraic Topolog	gy, Springer Verlag.			
Referen	Reference Books:				
1.	Hatcher A., 2002, Algebraic Topology, Cambridge University Press.				
E-resources:					
https://archive.nptel.ac.in/courses/					

<u>Course-Code: MAT539</u> Course Title: An Introduction to Fuzzy Set Theory and Fuzzy Logic				
Teaching Scheme		Examination Scheme	Credits Allotted	
Theory: 3 hours/ week		EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3	
Tutorial: 1 Hour/Week			Tutorial: 1	
			Total: 4	
Course Prerequisite: Students should have the knowledge of				
1.	1. classical set theory, and two-valued logic.			
Course Objectives:				

	1		
1.	To provide the basic knowledge of the fuzzy sets, operations and their properties.		
2.	To teach them the fundamental concepts of fuzzy functions and fuzzy relational calculus.		
3.	To teach them fuzzy logic in detail.		
4.	To teach them fuzzy numbers and evidence theory.		
Course O	utcomes: Students should be able to learn		
1.	the significance, need and applications of concepts of fuz	zziness.	
2.	the fundamental concepts of Fuzzy functions and Fuzzy le	ogic	
3.	the fuzzy numbers and its types.		
4.	how to apply evidence theory.		
Course C	ontent:		
Unit-I	Crisp sets vs fuzzy sets: Membership function types and properties, Chance versus fuzziness, Level sets, Cardinality and fuzzy cardinality, Set theoretic operations on fuzzy sets, Inclusion and Difference, Fuzzy compliments, Fuzzy intersections: t-Norms, Fuzzy unions: t-Conorms, Algebraic operations, Averaging operators. Alpha-cut decomposition principle,	15 Hours	
Unit-II	Extension principle. Crisp versus fuzzy relations, Projections, Composition of fuzzy relations, Fuzzy binary relations, Fuzzy n-ary relation, transitive closure, Fuzzy equivalence relations. Classical logic an overview, : Introduction to propositional Logic, Boolean Algebra, Multi valued logic,	15 Hours	
Unit-III	Fuzzy logic, Linguistic hedges, Fuzzy propositions (conditional and unconditional), Approximate reasoning, Implication operations, Natural language, Fuzzy qualifiers, Inference from conditional and qualified fuzzy propositions, Fuzzy Quantifiers, Inference from quantified fuzzy propositions.	15 Hours	
Unit-IV	Fuzzy numbers, Types of fuzzy numbers, Linguistic variables, Fuzzy arithmetic: Extension principle and Interval arithmetic, Fuzzification, Defuzzification, Methods of Defuzzification. Fuzzy measures, Evidence	15 Hours	

	theory, Necessity and belief measures, Probability measures vs possibility measures.	
Internal	Assessment:	
CIA*-1	Unit -I	
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce, based on Unit II and III	
EoSE**	Unit-I, II, III, IV	
	nuous Internal Assessment of Semester Examination	
Text Bo	oks:	
2. 1 3. 2	Klir, G. J., Yuan B., 1997, Fuzzy Sets and Fuzzy Logic: A Hall. Ross T. J., 1995, Fuzzy Logic with Engineering Applications, Zimmermann H. J., 1990, Fuzzy Set Theory and Its Application Lee. K. H., 2005, First Course on Fuzzy Theory and Application	McGraw Hill. on (2 nd Ed.), Kluwer, Boston.
Referen	ce Books:	
	Bojadziev, G. and Bojadziev, M., 1996, Fuzzy Sets, F Scientific.	uzzy Logic, Applications, World
E-resou	rces:	
1.]	https://archive.nptel.ac.in/courses/108/104/108104157/	

<u>Course-Code: MAT540</u> <u>Course Title: Celestial Mechanics</u>				
Teaching Scheme	Examination Scheme	Credits Allotted		
Theory: 3 hours/ week	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3		
Tutorial: 1 Hour/Week		Tutorial: 1		

				Total: 4
Course Pre	erequisite:			
1.	Basics of linear algebra, analytical geometry, differential equations, and vector calculus.			
Course Ob	jectives: To develo	op the concept of		
1.	-	•	s laws of planetary motion paths/orbits of moving maths	on and Newton's laws of ass.
2.	-	moving frame of reference and its relation to fixed frame along with formulation and special solutions and applications of three body problems.		
3.			nd their applications alo icted three body problem	ng with formulation and s.
4.			ace and their impacts on ng with normal form and	small space objects (e.g. its application.
Course Ou	tcomes: Students v	will be able to		
1.	learn about pla	learn about planetary motion of space objects and visualize their orbits/paths.		
2.		know the need of different kinds of frames of reference and understand the formulation and importance of special solutions of three body problems.		
3.	verify the stable/unstable equilibrium points and understand the applications of stable points along in addition with applications of different kinds of restricted three body problems.			
4.	learn about the different kinds of perturbations in space and their impacts on small space objects (e.g. asteroid, satellite, space craft etc.) along with application of normal form for stable motion.			
Course Co	ntent:			
Unit-I	force motion, I force and Geor problem, Eart	Kepler's Laws of Plane Differential equation of netry of orbits, Relativ hbound satellite circ s, Kepler's equation ar	Forbit, Inverse square e motion in two body ular orbit, Classical	15 Hours
Unit-II	rotating frame, Uniform rotat	of reference, Derivat motion of a mass rela ing frame, General t tion, Lagrange's specie	tive to rotating frame, hree body problem,	15 Hours

Unit-III	Circular RTBP, Lagrangian points and their stability, Zero velocity curves, Elliptic RTBP, Equilibrium points, Existence of ZVC, Introduction of Robe's RTBP, Hill's problem, Sitnikov problem and their applications.	15 Hours
Unit-IV	Introduction of perturbations factors, potential of oblate body, effective force of radiating body, potential due to disc or belt like structure. Introduction of normal form, Hamiltonian function, Normalization of Hamiltonian function of Circular RTBP and its applications.	15 Hours
Internal Ass	sessment:	
CIA*-1	Unit-I	
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva- Voce based on Unit-II and III	
EoSE**	Written Exam. for Unit-I, II, III, & IV	
	s Internal Assessment emester Examination	
Text Books:		
Com 2. Mur 3. Stro <i>Cher</i>	Cuskey, S. W., 1963, Introduction to Celestial Mechanics, A pany. ray, C. D. and Dermott S.F., 2000, Solar System Dynamics, Cam gatz, S.H., 1994, Nonlinear Dynamics and Chaos: With Applica nistry and Engineering, Addison-Wesley. K.S., 2009, Classical Mechanics, PHI Learning, Pvt. Ltd.	bridge University Press.
Reference B	ooks:	
	lton, F.R., 1914, An Introduction to Celestial Mechanics, the Ma ehely, V., 1967, Theory of orbits. The restricted problem of threes.	
E-resources		

<u>Course-Code: MAT-541</u> <u>Course Title:</u> <u>COMPUTATIONAL ODE</u>				
Teaching So	cheme	Examination Scheme	Credits Allotted	
Theory: 3 I	Hours/week	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3	
Tutorial: 1	Hour/week		Tutorial: 1	
			Total: 4	
Course Prere	quisite: Students sho	uld have knowledge of		
1.	basics of Linear Al	gebra		
2.	basics of Differenti	al Equations		
3.	basics of Numerica	l Methods		
Course Objec	tives: This course aim	as to learn		
1.	the numerical techniques for IVP and BVP			
2.	the convergence and stability of finite difference schemes			
3.	the finite difference method for differential equations.			
4.	the finite element methods for differential equations.			
5.	the application of numerical techniques in real life problems.			
Course Outco	omes: Students will be	able to		
1. obtain numerical solutions and the concepts of consistency, stability, convergence and error analysis.				
2.	check the stability and convergence of numerical methods.			
3.	solve numerically linear and nonlinear ordinary differential equations.			
4.	find the numerical solution to ODEs by using a computer program.			
5.	5. apply various numerical methods in real life problems.			
Course Content:				
Unit-I	equations and second Runge-Kutta explici	of systems of simultaneous first order different d order initial value problems (IVP) by Euler t methods, numerical solutions of second or blems (BVP) of first, second and third types	and rder 15 Hours	

Unit-II	Types of finite difference schemes of second order BVP based on difference operators (solutions of tridiagonal system of equations), solutions of such BVP by Newton-Cotes and Gaussian integration rules, convergence and stability of finite difference schemes.			
Unit-III	IIIVariational principle, approximate solutions of second order BVP of first kind by Rayleigh-Ritz, Galerkin, collocation and finite difference methods.15 Hour			
Unit-IV	Finite Element methods for BVP-line segment, triangular and rectangular elements, Ritz and Galerkin approximation over an element, assembly of element equations and imposition of boundary conditions.			
Internal Ass	essment:			
CIA-I*	Unit-I			
CIA-II	Written Exams/ Quizzes/ Assignment/ Presentations/ Viva-Voce based on Unit-II and III			
EoSE**	Unit-I, II, III, IV			
	ous Internal Assessment Semester Examination			
Text Book	5:			
	, Iyengar S. R. K., Jain R. K., 2003, <i>Numerical Methods for Scientific and</i> s, New Age Publications.	Engineering		
2. Jain, M. K	., 1984, Numerical Solution of Differential Equations (2 nd Ed.), Wiley-Easter	rn.		
3. Sastry, S. S., 2002, Introductory Methods of Numerical Analysis, Prentice-Hall of India.				
4. Griffiths, D.V., Smith I. M., 1993, Numerical Methods for Engineers, Oxford University Press.				
5. Gerald C. F., Wheatley P. O., 1998, Applied Numerical Analysis, Addison-Wesley.				
Reference	Books:			
-	h, A. K. and Singh, A. K., 2018, <i>Numerical Methods for Differential Equation rams</i> , Narosa Publications.	ons with		
E-resource	25:			
https://np	tel.ac.in/courses/111107063			

Course-Code: MAT-542 Course Title: COMPUTATIONAL PDE

Teaching Scheme		ieme	Examination Scheme Cred	Credits Allotted	
Theory: 3 Hours/week		ours/week	EoSE: 60 MarksTheoInternal Assessment: 40 MarksTheo	ry: 3	
Tutorial	: 1 H	lour/week	Tuto	rial: 1	
			Total	: 4	
Course	Prere	equisite: Students	should have knowledge of		
1.		basic of Linear	Algebra		
2.		basic of Differe	ential Equations		
3.		basic of Numer	ical Methods		
Course	Course Objectives: This course aims to learn				
1.	the numerical techniques for partial differential equations				
2.	the convergence, truncation errors and stability of finite difference schemes				
3.	the explicit methods for partial differential equations.				
4.	the implicit methods for partial differential equations				
5.	the finite element methods for partial differential equations.				
6.	the application of numerical techniques in real life problems.				
Course	urse Outcomes: Students will be able to				
1.	obtain numerical solutions and the concepts of truncation errors, stability, convergence.			convergence.	
2.	check the stability and convergence of numerical methods.				
3.	solve numerically parabolic, elliptic and hyperbolic equations.				
4.	find the numerical solution to PDEs by using a computer program.				
5.	apply various numerical methods in real life problems.				
Course Content:					
Unit-I	Unit-I variable with co implicit difference		ons of parabolic equations of second order in one space nstant coefficients:- two and three levels explicit and ce schemes, truncation errors and stability, Difference asion convection equation.	nd 15 Hours	

Unit-II	Numerical solution of parabolic equations of second order in two space variables with constant coefficients-improved explicit schemes, implicit methods, alternating direction implicit (ADI) methods.15 Hours			
Unit-III	Numerical solution of hyperbolic equations of second order in one and two space variables with constant and variable coefficients-explicit and implicit methods, alternating direction implicit (ADI) methods.15 Hours			
Unit-IV	Numerical solutions of elliptic equations, Solutions of Dirichlet, Neumann and mixed type problems with Laplace and Poisson equations in rectangular, circular and triangular regions, Finite element methods for Laplace, Poisson, heat flow and wave equations.			
Internal A	ssessment:			
CIA-I*	Unit-I			
CIA-II	Written Exams/ Quizzes/ Assignment/ Presentations/ Viva-Voce based or and III	ı Unit-II		
EoSE**	Unit-I, II, III, IV			
	ous Internal Assessment Semester Examination			
Text Books:				
	K., Iyengar S. R. K., Jain R. K., 1994, Computational Methods for Partic Viley Eastern.	al Differential		
2. Jain M. K.	., 1984, Numerical Solution of Differential Equations (2 nd Ed.), Wiley Eastern			
3. Sastry S. S	S., 2002, Introductory Methods of Numerical Analysis, Prentice-Hall of India.			
4. Griffiths I	D. V., Smith I. M., 1993, Numerical Methods of Engineers, Oxford University	Press.		
5. General C	. F., Wheatley P. O., 1998, Applied Numerical Analysis, Addison- Wesley.			
6. Bathe K. J	., Wilson E. L., 1987, Numerical Methods in Finite Element Analysis, Prentic	e-Hall.		
Reference B	ooks:			
	umder, S., 2016, Numerical Methods for Partial Differential Equations: Finit Finite Volume Methods, Academic Press.	e Difference		
 Sewell, G., 2015, <i>THe Numerical Solution of Ordinary and Partial Differential Equations</i>, 3rd Ed., World Scientific Publications. 				
E-resource	es:			
https://ocv spring-200	v.mit.edu/courses/18-336-numerical-methods-for-partial-differential-equa 19/	ations-		

<u>Course Code: MAT543</u> <u>Course Title: DIFFERENTIAL GEOMETRY</u>			
Teaching Scheme		Examination Scheme	Credits Allotted
Theory: 3 hou	urs/ week	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3
Tutorial: 1 Ho	our/Week		Tutorial: 1
			Total: 4
Course Prere	equisite: Studer	nts should have knowledge of Calculus	
Course Obje	ctives:		
1.	To introduce t	he basic concept of smooth manifolds with a	a variety of examples
2.	To elaborate t	he basic notions of smooth maps between m	anifolds and tangent spaces.
3.	To convey app	plications of manifolds	
Course Outco	omes: Students	will be able to learn	
1.	the concepts of smooth manifold, smooth map, and tangent space.		nt space.
2.	the inverse f submersions;	function theorem to describe the local	structure of immersions and
3.	the applications and significance of the topic in hands.		
Course Cont	ent:		
Unit-I	Smooth map Partial deriva	fold, chart and atlas, Compatible charts, s between manifolds, Diffeomorphisms, tives on manifolds, the inverse function otient manifolds	15 Hours
Unit-II	projective spa local express	we spaces, Standard smooth atlas for real ace, Tangent spaces, Differential of a map, sions for differentials, Immersions and Rank, critical and regular points,	15 Hours
Unit-III	Whitney's em	and level sets, the rank of a smooth maps, bedding theorem; Tangent bundle, Smooth smooth frames, Vector fields and local	15 Hours

		[
	flows.	
Unit-IV	Differential 1-Forms, Cotangent bundle, Characterization of smooth 1-Forms, Pullback of 1- forms, Differential k-Forms, local expression for k- Form, Pullback of k-Forms, the Wedge Product, Differential forms on a circle.	15 Hours
Internal Asso	essment:	
CIA*-1	Unit -I	
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit II and Unit III	
EoSE**	Unit-I, II, III, IV	
	s Internal Assessment mester Examination	
Text Books:		
 O'Ne Thorp 	T. L., 2010, An Introduction to Manifolds (2 nd Ed.), Springer ill B., 1966, Elementary Differential Geometry, Academic be J. A., 1979, Elementary Topics in Differential Geometry, sundaram D., 2010, Differential Geometry: A First Course	Press, New York. Springer Verlag.
Reference Bo	ook:	
1. Willn	nore T. J., 1965, An Introduction to Differential Geometry,	Oxford University Press.
E-resources	:	
https://ocw.m	it.edu/courses/18-950-differential-geometry-fall-2008/	
_		

<u>Course-Code: MAT 544</u> <u>Course Title: Differential Equations & Dynamical Systems</u>			
Teaching Scheme	Examination Scheme	Credits Allotted	
Theory: 3 hours/ week	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3	
Tutorial: 1 Hour/Week		Tutorial: 1	

				Total: 4	
Course Prere	Course Prerequisite: Students should have knowledge of				
1.	1. Differential Equations, Calculus and Linear Algebra				
Course Obje	ctives:				
1.	To introduce t	he theory, properties and ap	plications of var	ious dynamical systems	
2.	To make the s	tudents familiar with stable	and unstable sub	ospaces and manifolds	
3.	To teach an in	nportant theorems: Hartman	-Grobman, stabl	e manifold	
4.	To introduce of	enter manifold theory and n	ormal form theo	ory	
5.	To discuss glo	bal existence theorem and P	Poincare-Bendix	son theory	
Course Outc	omes: Students	will be able to			
1.	analyze and solve system of linear differential equations				
2.	learn theory of nonlinear system: existence, maximal interval of existence and linearization				
3.	apply different important theorem and theories e.g., Hartman-Grobman, stable manifold theorems, centre and normal form theory				
4.	learn global existence theorem				
5.	discuss about limit sets, limit cycles and periodic orbits for a given dynamical system				
Course Cont	ent:				
Unit-I	systems and t	s: Exponentials of operators heir phase portraits, comple values, Jordon forms, Stabil	ex eigenvalues,	15 Hours	
Unit-II	homogeneous fundamental maximal inter differential eq	igenvectors and invariant su linear systems, Nonlinear existence-uniqueness theo val of existence, The flow uation, Linearization, The s Hartman-Grobman theorem	Systems: The brem, The defined by a	15 Hours	
Unit-III	and Centers,	Lyapunov functions, Saddle Center manifold and Norma ystems and global exister	al form theory,	15 Hours	

		1
	Limit sets and Attractors, Periodic orbits	
Unit-IV	Limit Cycles, and Separatrix cycles, Poincare map, Stable manifold theorem for periodic orbits, Poincare- Bendixson theory in xy-plane, Lineard Systems, Bendixson's Criteria.	15 Hours
Internal As	sessment:	
CIA*-1	Unit -I	
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit-II and III	
EoSE**	Unit-I, II, III, IV	
	us Internal Assessment emester Examination	
Text Books	:	
1. Perk	to L., 2006, Differential Equations and Dynamical Systems, S	Springer-Verlag.
	ch M. W., Smale S., Robert L.D., 2013, <i>Differential Equation oduction to Chaos</i> , Academic Press.	ns, Dynamical Systems and An
	art A. M., Humphries A. R., 1998, <i>Dynamical Systems and N</i> versity Press.	Jumerical Analysis, Cambridge
4. Lyne	ch S., 2004, Dynamical Systems with Applications using MA	TLAB, Birkhause Press.
Referen	ce Books:	
	gatz, S. H., 2000, Nonlinear Dynamics and Chaos with Appendix and Engineering, Westview Press.	plications to Physics, Biology,
E-resources	:	
-	.youtube.com/playlist?list=PLbN57C5Zdl6j_qJA-pARJnKsr .youtube.com/watch?v=BRaliLNuvNg&list=PL6hB9Fh0Z1I	

<u>Course-Code: MAT 545</u> <u>Course Title: Financial Mathematics</u>

Teaching	Scheme	Examination Scheme	Credits Allotted
Theory: 3 hours/ week		EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3
Tutorial: 1	Hour/Week		Tutorial: 1
			Total: 4
Course Pr	erequisite: Stude	nts should have knowledge of	
1.	Elementary N	Aathematics and Probability	
Course O	bjectives:		
1.	To provide th	e theoretical foundations required to unders	tand the financial mathematics
2.	To make the	students familiar with the concepts of life in	surance contracts.
3.	To teach Blac	To teach Black Scholes model and Black Scholes equation	
4.	To introduce	To introduce Binomial methods and Monte Carlo simulation	
5.	To discuss fir	To discuss finite difference methods	
Course O	utcomes: Students	s will be able to learn	
1.	theoretical fo	theoretical foundations required to understand the financial mathematics	
2.	Binomial met	Binomial methods	
3.	how to do Mo	how to do Monte Carlo simulation	
4.	Finite differe	Finite difference methods	
Course Co	Course Content:		
Unit-I	interest rates model : arb	Introduction to options and markets: types of options, interest rates and present values, Black Scholes model : arbitrage, option values, pay offs and strategies, put call parity, Black Scholes equation15 Hours	
Unit-II	Similarity solution and exact formulae for European options, American option, call and put options, free boundary problem, Binomial methods: option valuation, dividend paying stock, general formulation		15 Hours

	and implementation	
Unit-III	Monte Carlo simulation : valuation by simulation, Lab component: implementation of the option pricing algorithms and evaluations for Indian companies, different concepts associated with Finite difference methods	15 Hours
Unit-IV	Finite difference methods: explicit and implicit methods with stability and conversions analysis methods for American options- constrained matrix problem, projected SOR, time stepping algorithms with convergence and numerical examples	15 Hours
Internal Asso	essment:	
CIA*-1	Unit -I	
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit-II and III	
EoSE**	Unit-I, II, III, IV	
	s Internal Assessment mester Examination	
Text Books:		
1. Luen	berger D. G., 1998, Investment Science, Oxford University	Press.
2. Hull York	J. C., 2000, Options, Futures and Other Derivatives (4 th Ed.), Prentice-Hall New
3. Cox J	. C., Rubinstein M., 1985, Option Market, Englewood Clif	fs, N. J. Prentice-Hall.
4. Jones	C.P., 1996, Investments, Analysis and Measurement (5 th E	d.), John Wiley and Sons.
5. Capir	nski M., Zastawnaik T., Mathematics for Finance, Springer	
Reference Bo	ooks:	
1. Wahi	dudin A.N., , 2000, Financial Mathematics and Its Applica	tions, Ventus Publishing ApS
E-resources:		
https://nptel.a	c.in/courses/111103126	
~ ~	—	

	<u>Course-Code: MAT546</u> <u>Course Title: ADVANCED COMPLEX ANALYSIS</u>				
Teaching	Scheme	Examination Scheme	Credits Allotted		
Theory: 3	hours/ week	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3		
Tutorial:	1 Hour/Week		Tutorial: 1		
			Total: 4		
Course P	rerequisite: The	student should have knowledge of Complex Analysis.			
Course C)bjectives:				
1. T	o teach some top	ics of contemporary complex analysis.			
2. T	o prepare the stu	dent to independent work in these topics			
3. T	o teach the meth	ods of complex analysis in other areas of mathematics			
Course C	Dutcomes: Studer	nts will be able to learn			
1. th	ne basic technique	es of contemporary complex analysis			
2. aj	pplications of the	se techniques in harmonic analysis,			
3. u	nivalent function	s theory and special functions.			
Course C	Content:				
Unit-I	Picard's great Casorati-Weier	orem and its different proofs, Picard's little theorem, theorem, Week form of Picard's great theorem, rstrass theorem, Harmonic conjugate, Transformation nctions, Transformations of boundary conditions.	15 Hours		
Unit-II	temperature in	of conformal mappings, Steady temperatures, Steady a half plane and related problems, Electrostatic ential in cylindrical space, Open mapping theorem,	15 Hours		

	Hurwitz' theorem, Analytic continuation, Direct analytic continuation Poisson integral formula, Dirichlet problem.		
Unit-III	Infinite sums, Mittag-Leffler theorem, Infinite product of complex numbers, Convergence of infinite products, Infinite product of analytic functions, Factorization of entire functions, Gamma functions, Riemann Zeta functions, Euler product formula, Riemann Functional equations, Riemann hypothesis.	15 Hours	
Unit-IV	Univalent functions, Basic results of univalent functions, Class S , Area theorem, Bieberbach theorem and conjecture, Koebe $1/4$ theorem, Riemann mapping theorem.	15 Hours	
Internal A	Assessment:		
CIA*-1	Unit -I		
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit-II and III		
EoSE**	Unit-I,II,III,IV		
	ious Internal Assessment f Semester Examination		
Text Books:			
 Brown J.W., and Churchill R.V., 2009, <i>Complex Variables and Applications</i>, McGraw Hill Ponnusamy S., 2005, <i>Foundations of Complex Analysis</i>, Narosa Publication House. Kasana H.S., 2005, <i>Complex Variables: Theory and Applications</i>, PHI. 			
Reference Books:			
1. Theodore G., 2003, Complex Analysis, Springer			
E-resources:			
https://	archive.nptel.ac.in/courses/111/106/111106084/		

<u>Course Code: MAT547</u> Course Title: FUNCTIONS OF SEVERAL REAL VARIABLES				
Teaching	Scheme	Examination Scheme	Credits Allotted	
Theory: 3	hours/ week	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3	
Tutorial: 1	Hour/Week		Tutorial: 1	
			Total: 4	
Course P	rerequisite: Stude	nts should have knowledge of		
1.	basic concepts of	f calculus of one variables		
Course O	bjectives:			
1	To explain how s	some concepts of calculus can be generalized in highe	r dimensions.	
2		To introduce multivariable calculus: different types of derivatives, chain rule, mean value theorem, maxima and minima, implicit and inverse function theorems.		
3	To explain how these generalized concepts impact inventions in science, technology and our daily life.			
Course O	utcomes: The stud	ents will be able to learn		
1.	how existing con higher dimension	cepts of calculus of one variable or two variable can b	e generalized in	
2	the significance of	the significance of the concepts defined and the theorems proved here;		
3	3 the importance of these generalized concepts impacts science, technology and our daily life.			
Course Co	ontent:			
Unit-I	compactness, ec Functions from	duct and as normed space, convergence of sequences, juivalence of norms, connected and convex sets, R^n to R^m, limit and continuity, Directional al derivatives of a function of several real variables.	15 Hours	
Unit-II	conditions for correal variables in	of a function of several real variables, sufficient ontinuity and differentiability of a function of several terms of partial derivatives, algebra of differentiable rule of differentiation, Total differentials.	15 Hours	

Unit-III	Mean value Theorem for real valued functions, homogeneous functions and Euler's Theorem, Equality of mixed derivatives, Young's and Schwarz Theorems, higher differentials, Taylor's Theorem.	15 Hours			
Unit-IV	Maxima and minima for real valued functions of several real variables, (necessary and sufficient conditions), saddle points, Lagrange's multipliers, Hessian matrix, Jacobian matrix and determinants, Implicit and Inverse function Theorems, Functional dependence	15 Hours			
Internal A	Assessment:				
CIA*-1	Unit -I				
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit-II and III				
EoSE**	Unit-I,II,III,IV				
	ous Internal Assessment Semester Examination				
Text Book	S:				
1. La	ng S, 1987, Calculus of Several Variables, Springer-Verlag, New York.				
2. Fle	eming W. H., 1977, Functions of Several Variables, Springer-Verlag, Ne	ew York.			
	3. Ghorpade S. R., Limaye B. V., 2010, A Course in Multivariable Calculus and Analysis, Springer, New York.				
Reference Books:					
 Giaquinta M., Modica G. 2009, Mathematical Analysis: An Introduction to Functions of Several Variables, Birkhauser, Boston. Spivak M., 1965, Calculus on Manifolds: A Modern Approach to Classical Theorems of Advanced Calculus, CRC Press. 					
E-resources:					
1. <u>https://onlinecourses.nptel.ac.in/noc20_ma27/preview</u>					

		<u>Course-Code: MAT548</u> <u>Course Title: LIE ALGEBRAS</u>	
Teaching Scheme		Examination Scheme	Credits Allotted
Theory: 3	hours/ week	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3
Tutorial:	1 Hour/Week		Tutorial: 1
			Total: 4
Course P	rerequisite: Studer	nts should have knowledge of	
1.	concepts of linear	r algebra	
Course O	bjectives:		
1	To teach the students how to utilize various techniques for working with Lie algebras		h Lie algebras
2	To teach the students the parts of a major classification result		
3	To teach the students the representations of sl(2, C)		
4	To teach the students root Space Decomposition		
Course O	Dutcomes: The stud	ents will be able to learn	
1.	the construction of Lie algebra		
2	the low-dimensional Lie algebras		
3	the semisimple Lie Algebras		
4	the root system		
Course C	Content:		
Unit-I	Subalgebras and Constants, Ideals	Algebras, Some Examples, classical Lie Algebras, I Ideals, Homomorphisms, Derivations, Structure and Homomorphisms, Constructions with Ideals, s, Correspondence between Ideals,	15 Hours

Unit-II	Low-Dimensional Lie Algebras, Dimensions 1,2and3, Solvable Lie Algebras, Nilpotent Lie Algebras, Subalgebras of gl(V), Weights, The Invariance Lemma, Engel's Theorem, Lie's Theorem, Some Representation Theory, Definitions, Examples of Representations, Modules for Lie Algebras, Irreducible and Indecomposable Modules, Schur's Lemma	15 Hours
Unit-III	Representations of sl(2, C), Classifying the Irreducible sl(2, C)- Modules, Weyl's Theorem, Cartan's Criteria, Jordan Decomposition, Testing for Solvability, The Killing Form, Testing for Semisimplicity, Derivations of Semisimple Lie Algebras	15 Hours
Unit-IV	The Root Space Decomposition, Cartan Subalgebras, Subalgebras Isomorphic to sl(2, C), Root Strings and Eigenvalues, Cartan Subalgebras as Inner-Product Spaces, Root Systems, Bases for Root Systems, Cartan Matrices and Dynkin Diagrams	15 Hours
Internal A	Assessment:	
CIA*-1	Unit -I,II	
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit-III	
EoSE**	Unit-I,II,III,IV	
	uous Internal Assessment f Semester Examination	
Text Boo	ks:	
	Sumphreys J. E., 1972, Introduction to Lie Algebras and Representation for the second se	on Theory, Springer-
2. Ja	acobson N., 1962, Lie Algebras, Wiley-Interscience, New York.	
3. E	rdmann K. and Wilson M.J., 2006, Introduction to Lie Algebras, Springer	-Verlag, New York.
Reference	e Books:	
1. S	erre J. P., 1965, Lie Algebras and Lie Groups, Benjamin, New York.	
E-resour	ces:	
https://a	archive.nptel.ac.in/courses/	

		<u>Course-Code: MAT549</u> <u>Course Title: MODULE THEORY</u>	
Teaching Scheme		Examination Scheme	Credits Allotted
Theory: 3 hours/ week		EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3
Tutorial:	1 Hour/Week		Tutorial: 1
			Total: 4
Course I	Prerequisite: Stude	nts should have knowledge of	
1.	concepts of ring	s and linear algebra	
Course (Objective:		
1	To teach the students linear algebra over certain rings		
2	To teach the students the basic definitions and elementary results		
3	To teach the students the classification of finitely generated abelian groups		
4	To teach the students Jordan Canonical form		
Course (Dutcomes: Students	s will be able to learn	
1.	the concepts of is	somorphism theorems	
2	the projective and	d injective modules	
3	the torsion and torsion-free modules		
4	the Jordan canonical form		
Course (Content:		
Unit-I	Modules over a ring, Endomorphism ring of an abelian group, R- Module structure on an abelian group M as a ring homomorphism from R to EndZ (M), submodules, Direct summands, Annihilators,		15 Hours

	Free Module, Noethrian and Artinian Module, Hilbert basis theorem, Wedderburn Artin Theorem, Split exact sequences and their characterizations, Left exactness of Hom sequences and counterexamples for non-right exactness, Projective modules, Injective modules, Baer's characterization, Divisible groups, Examples of injective modules. (M, M) as a ring, Exact sequences,	15 Hours
	Five lemma,	
	External and internal direct sums and their universal property, Submodules of finitely generated free modules over a PID, Torsion submodule, Torsion and torsion-free modules, Direct decomposition into T(M) and a free module, primary components, Decomposition of p-primary finitely generated torsion modules	15 Hours
	Elementary divisors and their uniqueness, Decomposition into invariant factors and uniqueness, Reduction of matrices over polynomial rings over a field, Similarity of matrices and F[x]-module structure, Rational canonical form of matrices, Elementary Jordan matrices, Reduction to Jordan canonical form, Diagonalizable and nilpotent parts of a linear operator, Smith normal form over PID, Uniqueness of Smith normal form	15 Hours
Internal As	ssessment:	
CIA*-1	Unit -I,II	
	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit-III	
EoSE**	Unit-I,II,III,IV	
	ous Internal Assessment Semester Examination	
Text Books	s:	
1. Du	ummit D. S. and Foote R. M., 2003, Abstract Algebra, John Wiley NY.	
2. Goj	palakrishnan N. S., 1986, University Algebra, Wiley Eastern Ltd., New	Delhi.
3. Lar	m T. Y., 2007, Exercises in Module and Rings, Springer.	
Reference	Books:	

1. Anderson F. W. and Fuller K. R., 1974, Rings and Categories of Modules, Springer, N.Y.

E-resources:

https://archive.nptel.ac.in/courses/

<u>Course-Code: MAT 550</u> Course Title: NONLINEAR DYNAMICS & CHAOS			
Teaching Scheme		Examination Scheme	Credits Allotted
Theory: 3 hours/ week		EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3
Tutorial: 1 Ho	our/Week		Tutorial: 1
			Total: 4
Course Prere	equisite: Studer	nts should have knowledge of	
1.	differential eq	uations and calculus	
Course Obje	ctives:		
1.	To provide knowledge of different topics in Nonlinear dynamics and chaos		ear dynamics and chaos
2.	To teach one dimensional systems and different types of bifurcations		es of bifurcations
3.	To introduce some real model systems and applications of one dimensional bifurcation and stability theory.		ions of one dimensional bifurcations
4.	To introduce two dimensional systems and associated bifurcations		ed bifurcations
5.	To discuss one dimensional maps and different topics in chaos		cs in chaos
Course Outco	Course Outcomes: Students will be able to learn		
1.	different topics in nonlinear dynamics and chaos		
2.	bifurcations for	or one dimensional system and associa	ated applications

3.	bifurcation theory for two dimensional systems and application		
4.	different aspects associated with chaos and applications		
Course Cont	ent:		
Unit-I	The importance of being nonlinear, A dynamical view of the world, One dimensional flows: Flows on the lines: a geometric way of thinking, Fixed points, Local stability analysis, Overdamped beam on a rotating hoop, Existence and Uniqueness, Impossibility of oscillations, Potentials, Bifurcations: Saddle-node bifurcations, Transcritical and Pitchfork bifurcations, Supercritical and Subcritical Pitchfork bifurcations, Laser threshold, Imperfect bifurcations and Catastrophes	15 Hours	
Unit-II	Insect outbreak: Model, Dimensionless formulation, Analysis of fixed points, Two dimensional flows: Linear systems, Definitions and examples, Classification of linear systems, Dynamics of love affairs, Rabbit Versus Sheep, Conservative Systems, Limit cycles, Ruling out closed orbits, Poincare-Bendixson theorem, Lienard systems, Weakly nonlinear oscillators,	15 Hours	
Unit-III	Bifurcations in case of two dimensional systems, Hopf- bifurcations in aeroelastic stabilities and chemical oscillators, Global bifurcations of cycles, chaotic waterwheels, waterwheel equations and Lorentz equations, Chaos in the Lorentz equations, Strange attractor of Lorentz equations	15 Hours	
Unit-IV	One dimensional map, Universal aspects of periodic doubling, Feigenbaum's renormalization analysis and periodic doubling, Renormalization: Function space and hands-on calculation, Fractals and the geometry of strange attractors, Henon map, Using chaos to send secret messages	15 Hours	
Internal Asse	essment:		
CIA*-1	Unit -I		
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit-II and III		
EoSE**	Unit-I, II, III, IV		

*: Continuous Internal Assessment **: End of Semester Examination

Text Books:

- 1. Strogatz S., 2001, Nonlinear Dynamics and Chaos, Springer.
- 2. Ermentrout B., 2005, Simulating Analyzing and Animating Dynamical Systems, SIAM.
- 3. Hirsch M. W., Smale S. and Devaney R. L., 2002, *Differential Equations, Dynamical Systems and an Introduction to Chaos*, Academic Press.
- 4. Guckenheimer J. and Holmes P., 2000, *Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields*, Springer, New York.

Reference Books:

- 1. Percival I., Richards, D., 1982, Introduction to Dynamics, Cambridge University Press
- 2. Guckenheimer J. and Holmes P., 2000, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer, New York.

E-resources:

https://www.youtube.com/playlist?list=PLbN57C5Zdl6j_qJA-pARJnKsmROzPnO9V

<u>Course-Code: MAT551</u> Course Title: FIELDS AND GALOIS THEORY			
Teaching Scheme	Examination Scheme	Credits Allotted	
Theory: 3 hours/ week	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3	
Tutorial: 1 Hour/Week		Tutorial: 1	
		Total: 4	
Course Prerequisite: Students should have knowledge of			
1. groups and rings			

Course O	bjectives:		
1	To teach the students symmetries of roots of a polynomial		
2	To teach the students the solubility in terms of simple algebraic formula	e	
3	To teach the students the algebraic properties of field extensions		
4	To teach the students geometric problems such as doubling the cube		
Course O	utcomes: Students will be able to learn		
1.	the algebraic extension		
2	the splitting field		
3	the Finite field		
4	the construction of regular polygon		
Course C	ontent:		
Unit-I	Eisenstein's irreducibility criterion, Characteristic of a field, Prime subfields, Field extensions, Finite extensions, Simple extensions, Algebraic and transcendental extensions. Factorization of polynomials in extension fields. Splitting fields and their uniqueness.	15 Hours	
Unit-II	Separable field extensions, Perfect fields, Separability over fields of prime characteristic, Transitivity of separability, Automorphisms of fields, Dedekind's theorem, Fixed fields, Normal extensions, Splitting fields and normality, normal closures,	15 Hours	
Unit-III	Galois extensions, Fundamental theorem of Galois theory, Computation of Galois groups of polynomials., Primitive element theorem, Finite fields, Existence and uniqueness, Subfields of finite fields, Characterization of cyclic Galois groups of finite extensions of finite fields, fundamental theorem of algebra	15 Hours	
Unit-IV	Cyclotomic extensions and polynomials, cyclic extensions, Solvability by radicals, Galois' characterization of such solvability, Generic polynomials, Abel-Ruffini theorem, geometrical constructions, construction of real number by ruler and compass, Impossibility of trisection of angle, Construction of regular polygon	15 Hours	
Internal A	Assessment:		
CIA*-1	Unit -I,II		

CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit-III	
EoSE**	Unit-I,II,III,IV	
	ious Internal Assessment f Semester Examination	
Text Bool	ks:	
1. D	ummit D. S. and Foote R. M., 2003, Abstract Algebra, John Wiley & Sons, New York.	
2. H	ungerford T. W., 2004, Algebra, Springer (India), Pvt. Ltd.	
3. R	oman S., 2007, Field Theory, Springer, New York.	
4. Stewart I. N., 2004, Galois Theory, Chapman & Hall, New York.		
Reference	e Books:	
1. A	rtin E., 1997, Galois Theory, Dover Publications.	
E-resourc	ces:	
https://a	archive.nptel.ac.in/courses/	

<u>Course-Code: MAT552</u> <u>Course Title: Operations Research</u>				
Teaching	Scheme	Examination Scheme	Credits Allotted	
Theory: 3 week	hours/	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3	
Tutorial: 1 Hour/Week			Tutorial: 1	
			Total: 4	
Course P	rerequisite	: Students should have knowledge of	I	
1.	Mathema	Iathematical Programming		

2.	Probability Theory		
Course O	bjectives:		
1.	To teach how to determine an optimal sequence out of a ser	ies of jobs.	
2.	To teach the PERT/CPM techniques to plan, schedule, and	control project activities.	
3.	To teach solution methodologies for deterministic and pro-	babilistic inventory models.	
4.	To introduce the basic concepts of stochastic processes.		
5.	To teach what is a queueing model and how to analyze some specific queueing models.		
Course O	Dutcomes: Students will be able to		
1.	find the optimal job sequencing.		
2.	get a deep understanding of the PERT/CPM techniques to plan, schedule, and control project activities.		
3.	learn deterministic and probabilistic inventory models.		
4.	learn the basic concepts of stochastic processes.		
5.	learn the theory behind queueing models and to characterize a queue & its key performance indicators.		
Course C	Content:		
Unit-I	Job sequencing: Principal assumptions, processing n jobs through m machines. Project management by PERT-CPM technique: Network representation, critical path computations, construction of the time schedule, project evaluation and report technique.	15 Hours	
Unit-II	Deterministic inventory models: General Inventory models, static economic order quantity (EOQ) model, dynamic EOQ models, deterministic models with price breaks. Review of Probability theory, Probabilistic Inventory models, Probabilistic EOQ model, Single period model.	15 Hours	
Unit-III	Stochastic processes, Classification and its properties, Markov process, types of Markov processes, infinitesimal generator matrix, transition probability matrix, steady	15 Hours	

	state distributions, transient distributions.	
Unit-IV	Queueing models: Elements of Queueing models, Kendall notations, Poisson process, pure birth model, pure death model, birth-death model, Chapman-Kolmogorov equations, Little's Law, distribution of waiting time and response time, Burke's Theorem, M/M/1 model, M/M/1/N models.	15 Hours
Internal	Assessment:	
CIA*-1	Unit -I	
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit-II and III	
EoSE**	Unit-I,II,III,IV	
	uous Internal Assessment of Semester Examination	
2. H 5 3. T 4. T	Castaneda L. B., Arunachalam V., Dharmaraja S., 2012 <i>Etochastic Processes with Applications,</i> Wiley, Hoboken, NJ, Wiley, Hoboken, NJ, Wiley F. S., Lieberman G. J., Nag B. and Basu P., 2012 <i>Research</i> , Tata McGraw Hill Education Pvt. Ltd. Caha H. A., 2007, <i>Operations Research-An Introduction</i> , Prent Crivedi K.S., 2016, <i>Probability and Statistics with Reliability</i> , <i>Applications</i> , John Wiley & Sons, Inc., Hoboken, NJ, USA.	USA. 2, <i>Introduction to Operations</i> tice Hall of India Pvt. Ltd.
Reference	ee Books:	
A	Trivedi K.S., 2016, <i>Probability and Statistics with Reliability</i> , Applications, John Wiley & Sons, Inc., Hoboken, NJ, USA. Medhi J., 2009, <i>Stochastic Processes (3rd Ed.)</i> , New Age Intern	
E-resour	ces:	

Course-Code: MAT553 Course Title: REPRESENTATION THEORY OF FINITE GROUPS

Teaching	ching Scheme Examination Scheme		Credits Allotted		
Theory: 3	hours/ week	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3		
Tutorial: 1	Hour/Week		Tutorial: 1		
			Total: 4		
Course P	rerequisite: Studer	nts should have knowledge of			
1.	concepts of group	os and module			
Course O	bjectives:				
1	To teach the stude	ents the representation theory of finite groups			
2	To teach the stude	ents the finite dimensional algebras			
3	To teach the stude	ents Maschke's Theorem			
4	To teach the stude	ents the character of the representation			
Course O	utcomes: Students	will be able to learn			
1.	the concepts of Faithful Representation				
2	the group algebra				
3	the Schur's lemma				
4	the character of the representation				
Course C	ontent:				
Unit-I	Representation of into group of Matrices, Examples, Faithful15 HoursRepresentation, Equivalent Representation, FG-module, Equivalent15 Hoursformulation of Representation as FG module.15 Hours				
Unit-II	Permutation mo Group algebra, H FG-homomorphis	15 Hours			
Unit-III		rem, Completely reducible FG-submodule, Schur's application, Representation of abelian groups,	15 Hours		

	Irreducible submodules of CG-module, Composition factor.					
Unit-IV	Character of the representation, class function, Character table, irreducible characters, degree of character, regular and permutation character, Orthogonality relation between characters.	15 Hours				
Internal A	Assessment:					
CIA*-1	Unit -I,II					
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit-III					
EoSE**	Unit-I,II,III,IV					
	ous Internal Assessment f Semester Examination					
Text Bool	ks:					
1. B	urrow M., 1965, Representation Theory of Finite Groups, Academic Pres	s.				
2. Ja	cobson N., 1983, Basic Algebra-II, Hindustan Publishing Corporation, N	Jew Delhi				
3. La	ang S., 2004, Algebra (3 rd Ed.), Springer.					
4. Se	erre J. P., 1977, Linear Representation of Groups, Springer-Verlag.					
Reference	e Books:					
1. D	1. Dornhoff L., 1971, Group Representation Theory-Part A, Marcel Dekker, Inc., New York.					
E-resources:						
https://a	https://archive.nptel.ac.in/courses/					

<u>Course-Code: MAT554</u> Course Title: SPECIAL FUNCTIONS

Teaching Scheme		Examination Scheme	Credits Allotted
Theory: 3 hours/ week		EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3
Tutorial: 1	Hour/Week		Tutorial: 1
			Total: 4
Course P	rerequisite: Studer	nts should have knowledge of Complex Analysis.	
Course O	bjectives: To demo	onstrate	
2. th 3. Be	e Riemann Zeta fun essel functions, Leg	special functions including Gamma functions actions, Hypergeometric functions, Generalized Hyper gendre polynomials, Hermite Polynomials and Laguer will be able to learn	-
		will be able to learn	
2. H	amma function ypergeometric func sic theory, propert	ctions ies and applications of special functions.	
Course C	ontent:		
Unit-I	functions, Gam functions, Eul Legendre's dupl Integral represen	t of complex numbers, Factorization of entire ma functions, Order symbols o and O, Beta er reflection formula, Factorial function, ication formula, Gauss's multiplication formula, ntations for Gamma function and Beta functions, s, Stirling formula.	15 Hours
formula, Riemann F Gauss Hypergeome Conditions of conv		ansion, Riemann Zeta functions, Euler product nn Functional equations, Riemann hypothesis, eometric Function, Elementary Properties, convergence, Contiguous function relations, sentation, Simple transformation, Quadratic	15 Hours
Elementary Pr polynomials and equations, Ge		pergeometric Functions, Integral representation, operties, Integral Representation, Legendre d functions, Solution of Legendre's differential merating Functions, Rodrigue's Formula, f Legendre polynomials, Recurrence relations.	15 Hours
Unit-IV	Bessel functions	s, Bessel differential equation and it's solution,	15 Hours

	Recurrence relation, Generating functions, Integral representation, Hermite Polynomials, Laguerre Polynomials.
Internal A	Assessment:
CIA*-1	Unit -I
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit-II and III
EoSE**	Unit-I,II,III,IV
	tous Internal Assessment f Semester Examination
Text Boo	ks:
2. B	ainville E. D., 1960, Special Functions, The MacMillan Comp. ell W.W., 1968, Special Functions for Scientists and Engineers, D. Van Nostrand comp. Ltd.
	ndrews G.E., Askey R. and Roy R., 1999, Special Functions, Encyclopedia of Inthematics and Its Applications, Cambridge University Press.
E-resour	ces:

<u>Course-Code: MAT-555</u> <u>Course Title: Mathematics for Machine Learning</u>						
Teaching Scheme	Examination Scheme	Credits Allotted				
Theory: 3 hours/ week	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3				
Practical: 2 Hours/Week		Practical: 1				
		Total: 4				
Course Prerequisite: Students should have knowledge of						

1.	basic knowledge in Calculus, LInear Algebra and Probability Theory				
2.	basic knowledge in python programming				
Course O	bjectives:				
1	To teach about Principal Component Analysis and Linear Discriminant	Analysis.			
2	To teach about different regression methodologies				
3	To teach various optimization methodologies.				
4	To teach support vector machines.				
Course O	Outcomes: Students will be able to				
1.	apply theoretical and numerically PCA and LDA.				
2	use regression techniques.				
3	obtain the optimal solution by different optimization methodologies.				
4	apply the concept of support vector machines in real life problems.				
Course C	Content:				
Unit-I	Basics concepts of Calculus and Linear Algebra, Linear Transformations, Orthogonal Complement and Projection Mapping, Eigenvalues and Eigenvectors, Special Matrices and Properties. Spectral Decomposition, Singular Value Decomposition, Low Rank Approximations, Principal Component Analysis, Linear Discriminant Analysis, Python Implementation of these methodologies.	11 Hours Theory + 8 Hours Lab			
Unit-II	Review of Probability Concepts, Least Square Approximation and Minimum Normed Solution, Linear and Multiple Regression, Logistic11 Hours Theory + 7 Hours LabRegression, Python Implementation.11				
Unit-III	Introduction to Optimization, Convex sets and convex functions, properties of convex functions, Various Optimization algorithms: Gradient Descent and others, Python Implementation of Optimization.				
Unit-IV	Discrete and continuous distribution functions, joint probability and covariance, Separating Hyperplanes, Primal and Dual Support Vector Machines, Kernels and Python Implementation.	12 Hours Theory + 7 Hours Lab			

Internal	Assessment:				
CIA*-1	Unit -I				
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit-II and III				
EoSE**	Unit-I,II,III,IV				
	uous Internal Assessment f Semester Examination				
Text Boo	ks:				
M 2. A 3. N 4. R	 Cheney W., 2001, Analysis for Applied Mathematics, New York: Springer Science+Business Medias. Axler S., 2015, Linear Algebra Done Right (3rd Ed.), Springer International Publishing. Nocedal J. and Wright S. J., 2006, Numerical Optimization, New York: Springer Science+Business Media. Rosenthal J. S., 2006, A First Look at Rigorous Probability Theory (2nd Ed.), Singapore: World Scientific Publishing. 				
Referenc	e Books:				
	eisenroth M.P., Faisal A.A. and Ong C.S., 2020, <i>Mathematics For</i> ambridge University	Machine Learning,			
E-resour	ces:				
1. h	ttps://archive.nptel.ac.in/courses/111/107/111107137/				

LEVEL-6

Seme	Semester-V (Integrated M.Sc. B.Ed)						
S. No.	Course Code	Course Title	Type of Course (C/E)	L	Т	Р	Credits
1	EDU601	School Internship-I (6 Weeks)		0	0	6	6
2	EDU602	School Internship & 2005 Teaching Practice-II and Case Study and Community Survey Research (14 weeks)		0	0	12	12
3	EDU603	Action Research in Schools		0	0	4	4
4		One course from Education Department					2
	Total				0	22	24

Seme	Semester-VI (Integrated M.Sc. B.Ed)						
S. No.	Course Code	Course Title	Type of Course (C/E)	L	Т	Р	Credits
1	MAT681	Major Project Dissertation in Mathematics	AECC	0	0	16	16
2		Elective Paper (Subjective)	DE	3	1	0	4
3		Elective Paper	GE	3	1	0	4
4		UHV**	Audit Course	3	1	0	4
	Total				3	16	24

LEVEL-6 (DE) (Electives)				
S. No.	Course Code	Course Title	Credit	Remarks
1	MAT631	ADVANCE REAL ANALYSIS	4	
2	MAT632	ADVANCED NUMERICAL METHODS	4	
3	MAT633	COMPLEX DYNAMICS	4	
4	MAT634	Number Theory	4	
5	MAT635	NONLINEAR DYNAMICS AND CONTROLS	4	

	<u>Course Code: MAT631</u> <u>Course Title: ADVANCED REAL ANALYSIS</u>						
Teaching	g Scheme	Examination Scheme	Credits Allotted				
Theory: 3 week	3 hours/	EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3				
Tutorial: Hour/We	-		Tutorial: 1				
			Total: 4				
Course P	Prerequisit	e:	·				
1.	Basic kno	wledge of Mathematical Analysis					
Course ()bjectives:						
1.	The course covers advanced metric space properties						
2	The course covers advanced Riemann integrability						
3	The course covers Cesaro's Method of Summability and Fourier Series						

Course Outcomes: Students will be able to					
1.	define the advanced properties in metric space				
2.	find the Riemann integrals using Lebesgue's criterion				
3.	find the bounded variations				
4.	classify the Cesaro"s Method of Summability and Fourier Ser	ies.			
Course C	Content:				
Unit-I	Metric spaces revisited; Baire Category theorem, completion of Metric spaces, Banach contraction principle and some of its applications. Compactness, Total boundedness, characterization of compactness for arbitrary Metric spaces; Arzella-Ascoli theorem, Stone Weierstrass theorem.	15 Hours			
Unit-II	Integrations : Lebesgue's criterion of Riemann integrability over a bounded closed interval [a, b] and its consequence, length of a rectifiable curve in a plane, Riemann-Stieltjes integral over [a, b] and its properties.	15 Hours			
Unit-III	Integrators of bounded variation, Integration by parts, Stieltjes integral as a Riemann integral, Step function as integrator, Riesz theorem.	15 Hours			
Unit-IV	Cesaro''s Method of Summability and Fourier Series: Cesaro''s method of summability of order 1 and order 2, Some specific examples, Regularity of Cesaro''s method, Definition of Fourier series and some examples, Dirichlet''s Kernel, Fejer''s Kernel, Fejer''s theorem, Dini''s and Jordan''s tests for point wise convergence of Fourier series.	15 Hours			
Internal	Assessment:				
CIA*-1	Unit -I				
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit-II and III				
EoSE**	Unit-I,II,III,IV				
	*: Continuous Internal Assessment **: End of Semester Examination				
Text Boo	ks:				

- 1. Bruckner, A. M., Bruckner J., Thomson B., 1997, *Real Analysis*, Prentice-Hall, N.Y.
- 2. Goldberg, R. R., 1970, Methods of Real Analysis, Oxford-IBH, New Delhi.
- 3. Natanson, I. P., 1955, *Theory of Functions of a Real Variable*, Vol-I, F.Ungar, N.Y.
- 4. Hewitt, E., Stromberg, K., 1965, Real and Abstract Analysis, John-Willey, N.Y.

Reference Books:

- 1. Randolph J. F., 1968, Basic Real and Abstract Analysis. Academic Press, N.Y.
- 2. Jain P. K., Ahmad K., 1996, Metric Spaces, Narosa Publishing House.
- 3. Tolstov G., 1962, Fourier Series, Dover Publication, N.Y.

E-resources:

https://archive.nptel.ac.in/noc/courses/noc21/SEM2/noc21-ma63

Course-Code: MAT632 Course Title: ADVANCED NUMERICAL METHODS				
Teaching Scheme		Examination Scheme Credits Allotted		
Theory: 3 hours/ week		EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3	
Tutorial: 1 Hour/Week			Tutorial: 1	
			Total: 4	
Course Prerequisite:				
1.	Basic kno	knowledge of numerical analysis		
Course Objectives:				
1.	The course covers advanced methods for solving the system of equations,			
2	The course covers advanced methods to solve eigenvalue problems, numerically.			
3	The course covers advanced methods to solve IVP and BVP, numerically.			
Course Outcomes: Students will be able to				
1.	find the zeros of nonlinear equations			

2.	find the solution of system of equations			
3.	find the solutions of BVP governed by ODE, numerically			
4.	find the solutions of IVP and BVP governed by PDE, numeric	cally.		
Course C	Content:			
Unit-I	Numerical solution of algebraic and transcendental equations: Introduction- iteration method, Newton-Raphson method, Graeffe ["] s root square method, acceleration of convergence. Numerical Solution of systems of nonlinear equations: iteration method, Newton-Raphson method.	15 Hours		
Unit-II	Linear Systems of equations: Introduction- Gauss elimination method, LU decomposition, Solution of tridiagonal system, Ill-conditioned linear systems and method for Ill-conditioned matrix. EigenValue problem: Power method, Jacobi Method, Householder method.	15 Hours		
Unit-III	Introduction- finite difference formulas. Boundary value problem: Introduction, BVP governed by second order ordinary differential equations, Finite difference method, shooting method, cubic splines method.	15 Hours		
Unit-IV	IVP and BVP in partial differential equations: classification of linear second order partial differential equations, Finite difference methods for Laplace and Poisson equations - Jacobi method, Gauss-Seidel method and ADI (alternating direction implicit) method , Finite difference method for heat conduction equation - Bender- Schmidt recurrence relation, Crank-Nicolson formula, and Jacobi Iteration formula, Finite difference method for wave equation.	15 Hours		
Internal Assessment:				
CIA*-1	Unit -I			
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit-II and III			
EoSE**	Unit-I,II,III,IV			
	uous Internal Assessment f Semester Examination			
Text Boo	ks:			
1. A	Atkinson K. E., 1989, An Introduction to Numerical Analysis (2	nd Ed.), Wiley-India.		

- 2. Sastry S. S., 2012, Introductory Methods of Numerical Analysis (5th Ed.), Eastern Economy Edition.
- Jain M. K., Iyengar S. R. K., Jain R. K., 2012, Numerical Methods for Scientific and Engineering Computation (6th Ed.), New Age International Publishers.

Reference Books:

1. Buchaman J. I., Turner P. R., 1992, Numerical Methods and Analysis, McGraw-Hill.

E-resources:

https://archive.nptel.ac.in/courses/111/107/111107105/

<u>Course Code: MAT633</u> <u>Course Title: COMPLEX DYNAMICS</u>				
Teaching Scheme		Examination Scheme	Credits Allotted	
Theory: 3 hours/ week		EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3	
Tutorial: 1 Hour/Week			Tutorial: 1	
			Total: 4	
Course Prerequisite: The student should have knowledge of				
1.	Complex a	Complex analysis		
Course Objectives:				
1.	To teach students bilinear transformation of complex functions			
2.	To teach students Fatou sets and Julia sets			
3.	To teach students the Euler characteristic, Riemann Hurwitz formula for covering maps			
Course Outcomes:Students will be able to				
1.	classify the bilinear transformation of complex functions			

2.	explain Fatou sets and Julia sets		
3.	explain the Euler characteristic, Riemann Hurwitz formula for covering maps.		
Course C	ontent:		
Unit-I	Iteration of a Mobius transformation, attracting, repelling and indifferent fixed points. Iterations of $R(z)$ = z2, z2+c, z + . The extended complex plane, chordal metric, spherical metric, rational maps, Lipschitz condition, conjugacy classes of rational maps, valency of a function, fixed points, Critical points, Riemann Hurwitz relation.	15 Hours	
Unit-II	Equicontinuous functions, normality sets, Fatou sets and Julia sets, completely invariant sets, Normal families and equicontinuity, Properties of Julia sets, exceptional points Backward orbit, minimal property of Julia sets.	15 Hours	
Unit-III	Julia sets of commuting rational functions, structure of Fatou set, Topology of the Sphere, Completely invariant components of the Fatou set.	15 Hours	
Unit-IV	The Euler characteristic, Riemann Hurwitz formula for covering maps, maps between components of the Fatou sets, the number of components of Fatou sets, components of Julia sets.	15 Hours	
Internal A	Assessment:		
CIA*-1	Unit -I		
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit-II and III		
EoSE** Unit-I, II, III, IV			
	nous Internal Assessment f Semester Examination		
Text Bool	ks:		
2. Ca 3. M	eardon, A.F. 1991, <i>Iteration of rational functions</i> , Springer arleson, L., Gamelin, T. W. 1993, <i>Complex dynamics</i> , Sprintforosawa, S., Nishimura, Y., Taniguchi, M., Ueda, T., ambridge University Press.	iger Verlag.	
Reference	e Books:		

1. Hua, H.X., Yang, C. C., 1998, *Dynamics of transcendental functions*, Gordan and Breach Science Pub.

E-resources:

https://archive.nptel.ac.in/courses/111/106/111106141

<u>Course-Code: MAT634</u> <u>Course Title: NUMBER THEORY</u>				
Teaching Scheme		Examination Scheme	Credits Allotted	
Theory: 3 hours/ week		EoSE: 60 Marks Internal Assessment: 40 Marks	Theory: 3	
Tutorial: 1	Hour/Week		Tutorial: 1	
			Total: 4	
Course Pr	rerequisite: The st	udent should have knowledge of		
1.	Elementary Num	ber Theory		
Course Objectives:				
1	To teach the students approximation of real numbers			
2	To teach the students the Diophantine equations			
3	To teach the students the arithmetic functions			
4	To teach the students Chebychev's theorems			
Course Outcomes: Students will be able to learn				
1.	the concepts of continued fractions			
2	the Waring's problem			
3	the Fibonacci series			

4	the Prime number theorem				
Course Content:					
Unit-I	Jacobi's Symbol, Kronecker Symbol, Approximation of real number, Farey Sequence, Approximation by rational numbers, Continued fractions				
Unit-II	t-II Diophantine equation ax^2+by^2+cz^2=0, sum of three squares, Pell's equation, Fundamental solutions, General (Diophantine) equation of second degree, Waring's problem				
Unit-III	Review of arithmetic functions, Character modulo k, Principal character, Additive arithmetic functions, Linear recurrence, Fibonacci series, Bonnet formula	15 Hours			
Unit-IV	Jnit-IVBertrand's postulate, Chebychev's theorems, The function □(x), Von Mangoldt function, Merten's theorems, Prime number theorem (statement only)15 Hours				
Internal	Internal Assessment:				
CIA*-1	Unit -I, II				
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit-II and III				
EoSE**	Unit-I,II,III,IV				
	ious Internal Assessment f Semester Examination				
Text Books:					
1. R	edmond D, 1996, Number Theory An Introduction, Marcel Dekker, New	[,] York			
 Shockley J. E., 1967, <i>Introduction to Number Theory</i>, Holt, Rinehart and Winston Inc., New York. 					
Reference Books:					
1. Nathanson M. B., 2000, Elementary Methods in Number Theory, Springer, New York					

E-resources:

Teaching Scheme Examination Scheme Credits Allotted Theory: 3 hours/ EoSE: 60 Marks Internal Assessment: 40 Marks Theory: 3 Tutorial: 1 Hour/Week Tutorial: 1 Tutorial: 1 Course Prerequisite: Students should have knowledge of Total: 4 Course Objectives: To Internal Equations and Calculus 1. Differential Equations and Calculus Course Objectives: 1. To introduce control theory followed by dynamical system theory 2. To teach different concepts in dynamical system theory 3. To teach Lyapunov functions and Poincare-Bendixon's theorem 4. To introduce two dimensional systems and associated bifurcations 5. To discuss different topics in control theory Course Outcomes: Students will be able to learn	<u>Course-Code: MAT 635</u> Course Title: NONLINEAR SYSTEMS & CONTROLS				
week Internal Assessment: 40 Marks Tutorial: 1 Tutorial: 1 Tutorial: 1 Hour/Week Total: 4 Course Prerequisite: Students should have knowledge of Total: 4 Course Objectives: To introduce control theory followed by dynamical system theory 1. To teach different concepts in dynamical system theory 2. To teach different concepts in dynamical system theory 3. To teach Lyapunov functions and Poincare-Bendixon's theorem 4. To introduce two dimensional systems and associated bifurcations 5. To discuss different topics in control theory Course Outcomes: Students will be able to learn	Teaching Scheme		Examination Scheme	Credits Allotted	
Hour/Week Total: 4 Course Prerequisite: Students should have knowledge of Total: 4 1. Differential Equations and Calculus Course Objectives: 1. To introduce control theory followed by dynamical system theory 2. To teach different concepts in dynamical system theory 3. To teach Lyapunov functions and Poincare-Bendixon's theorem 4. To introduce two dimensional systems and associated bifurcations 5. To discuss different topics in control theory Course Outcomes: Students will be able to learn				Theory: 3	
Course Prerequisite: Students should have knowledge of 1. Differential Equations and Calculus Course Objectives: 1. To introduce control theory followed by dynamical system theory 2. To teach different concepts in dynamical system theory 3. To teach Lyapunov functions and Poincare-Bendixon's theorem 4. To introduce two dimensional systems and associated bifurcations 5. To discuss different topics in control theory Course Outcomes: Students will be able to learn				Tutorial: 1	
1. Differential Equations and Calculus Course Objectives: 1. To introduce control theory followed by dynamical system theory 2. To teach different concepts in dynamical system theory 3. To teach Lyapunov functions and Poincare-Bendixon's theorem 4. To introduce two dimensional systems and associated bifurcations 5. To discuss different topics in control theory Course Outcomes: Students will be able to learn				Total: 4	
Course Objectives: 1. To introduce control theory followed by dynamical system theory 2. To teach different concepts in dynamical system theory 3. To teach Lyapunov functions and Poincare-Bendixon's theorem 4. To introduce two dimensional systems and associated bifurcations 5. To discuss different topics in control theory Course Outcomes: Students will be able to learn	Course I	Prerequisit	e: Students should have knowledge of		
1. To introduce control theory followed by dynamical system theory 2. To teach different concepts in dynamical system theory 3. To teach Lyapunov functions and Poincare-Bendixon's theorem 4. To introduce two dimensional systems and associated bifurcations 5. To discuss different topics in control theory Course Outcomes: Students will be able to learn	1.	Different	al Equations and Calculus		
 To teach different concepts in dynamical system theory To teach Lyapunov functions and Poincare-Bendixon's theorem To introduce two dimensional systems and associated bifurcations To discuss different topics in control theory Course Outcomes: Students will be able to learn 	Course (Course Objectives:			
 3. To teach Lyapunov functions and Poincare-Bendixon's theorem 4. To introduce two dimensional systems and associated bifurcations 5. To discuss different topics in control theory Course Outcomes: Students will be able to learn 	1.	To introduce control theory followed by dynamical system theory			
4. To introduce two dimensional systems and associated bifurcations 5. To discuss different topics in control theory Course Outcomes: Students will be able to learn	2.	To teach different concepts in dynamical system theory			
5. To discuss different topics in control theory Course Outcomes: Students will be able to learn	3.	To teach Lyapunov functions and Poincare-Bendixon's theorem			
Course Outcomes: Students will be able to learn	4.	To introduce two dimensional systems and associated bifurcations			
	5.	To discuss different topics in control theory			
	Course (Dutcomes:	Students will be able to learn		
1. different topics in dynamical systems and control theory	1.	different topics in dynamical systems and control theory			
2. stability theory associated with dynamical systems	2.	stability theory associated with dynamical systems			
3. Lyapunov stability-I and Lyapunov stability-II.	3.	Lyapunov	Lyapunov stability-I and Lyapunov stability-II.		
4. several important aspects related to control systems	4.	several important aspects related to control systems			

5.	different applications of control theory in computing, communications, and sensing technologies that present unprecedented opportunities to impact the economic and scientific development of a particular nation and the world.			
Course C	Content:			
Unit-I	Formulation of physical systems, Existence and Uniqueness theorems, Linear systems, Solution of linear systems, Fundamental matrix, autonomous systems, solution of non- homogeneous systems, Fundamental matrices for Non- autonomous systems, solution of non-homogeneous systems.	15 Hours		
Unit-II	Stability of systems: equilibrium points, stability of linear autonomous systems, Stability of linear systems, Stability of weakly non-linear systems, Linearization, Properties of phase portrait, Properties of Orbits, Phase portrait: Types of critical points, Phase portrait of linear differential equations, Poincare Bandixon's theorem, Limit cycle, Lyapunov stability-I, Lyapunov stability-II.	15 Hours		
Unit-III	Introduction of control systems, Controllability of autonomous systems, Controllability of non-autonomous systems, Observability, Results on controllability and observability, Companion form, Feedback Control, State Observer, Stabilizability, Introduction to discrete systems, Lyapunov stability-I, Lyapunov stability-II, Lyapunov stability-III.	15 Hours		
Unit-IV	Optimal Control, Optimal Controls for Discrete systems, Controllability of discrete systems, Observability of discrete systems-I, Stability for discrete systems, Relation between continuous and discrete systems-II.	15 Hours		
Internal	Assessment:			
CIA*-1	Unit -I			
CIA-II	Written Exams/ Quizzes /Assignment /Presentations/ Viva-Voce based on Unit-II and III			
EoSE**	Unit-I, II, III, IV			
	I uous Internal Assessment f Semester Examination	1		
Text Boo	ks:			
1. B	arun M. 2011, Differential Equations and Their Applications,	Springer		

- 2. Barnett S., 1990, Introduction to Mathematical Control Theory, Oxford University Press.
- 3. Naidu R.D.S., 2010, Optimal Control Systems, CRC Press.
- 4. Lakshmikantham, V., Raghvendra, V., 2005, *Text Book of Ordinary Differential Equations*, Tata McGraw Hill.
- 5. Gopal, M., 1994, Modern Control Systems, John Wiley and Sons.

Reference Books:

- 1. Simmons G.F., 203, Ordinary Differential Equations, Tata McGraw Hill
- 2. Deo, S.G., Lakshminkantahm, V,., Raghbendra, V., 2020, *Text Book of of Ordinary Differential Equations*.

E-resources:

https://onlinecourses.nptel.ac.in/noc20_ma46/preview